r3960 - trunk/bse
- From: timj svn gnome org
- To: svn-commits-list gnome org
- Subject: r3960 - trunk/bse
- Date: Wed, 11 Oct 2006 20:15:18 -0400 (EDT)
Author: timj
Date: 2006-10-11 20:15:16 -0400 (Wed, 11 Oct 2006)
New Revision: 3960
Modified:
trunk/bse/ChangeLog
trunk/bse/bseiirfilter.c
Log:
Thu Oct 12 02:14:44 2006 Tim Janik <timj gtk org>
* bseiirfilter.c: more unused section removal. auto-fixed indentation.
Modified: trunk/bse/ChangeLog
===================================================================
--- trunk/bse/ChangeLog 2006-10-12 00:03:34 UTC (rev 3959)
+++ trunk/bse/ChangeLog 2006-10-12 00:15:16 UTC (rev 3960)
@@ -1,3 +1,7 @@
+Thu Oct 12 02:14:44 2006 Tim Janik <timj gtk org>
+
+ * bseiirfilter.c: more unused section removal. auto-fixed indentation.
+
Thu Oct 12 02:01:47 2006 Tim Janik <timj gtk org>
* bseiirfilter.c: streamlined first comment section. got rid of useless
Modified: trunk/bse/bseiirfilter.c
===================================================================
--- trunk/bse/bseiirfilter.c 2006-10-12 00:03:34 UTC (rev 3959)
+++ trunk/bse/bseiirfilter.c 2006-10-12 00:15:16 UTC (rev 3960)
@@ -233,20 +233,18 @@
#define ERANGE 34
/* Complex numeral. */
typedef struct
- {
- double r;
- double i;
- } cmplx;
+{
+ double r;
+ double i;
+} cmplx;
-/* Type of computer arithmetic */
-
-/* UNKnown arithmetic, invokes coefficients given in
+/* Type of computer arithmetic is
+ * UNKnown arithmetic, invokes coefficients given in
* normal decimal format. Beware of range boundary
* problems (MACHEP, MAXLOG, etc. in const.c) and
* roundoff problems in pow.c:
- * (Sun SPARCstation)
+ * (Sun SPARCstation, i386)
*/
-#define UNK 1
/* Define to support tiny denormal numbers, else undefine. */
#define DENORMAL 1
@@ -327,7 +325,6 @@
/* const.c */
-#ifdef UNK
#if 1
double MACHEP = 1.11022302462515654042E-16; /* 2**-53 */
#else
@@ -369,154 +366,8 @@
#else
double NEGZERO = 0.0;
#endif
-#endif
-#ifdef IBMPC
- /* 2**-53 = 1.11022302462515654042E-16 */
-unsigned short MACHEP[4] = {0x0000,0x0000,0x0000,0x3ca0};
-unsigned short UFLOWTHRESH[4] = {0x0000,0x0000,0x0000,0x0010};
-#ifdef DENORMAL
- /* log(MAXNUM) = 7.09782712893383996732224E2 */
-unsigned short MAXLOG[4] = {0x39ef,0xfefa,0x2e42,0x4086};
- /* log(2**-1074) = - -7.44440071921381262314E2 */
-/*unsigned short MINLOG[4] = {0x71c3,0x446d,0x4385,0xc087};*/
-unsigned short MINLOG[4] = {0x3052,0xd52d,0x4910,0xc087};
-#else
- /* log(2**1022) = 7.08396418532264106224E2 */
-unsigned short MAXLOG[4] = {0xbcd2,0xdd7a,0x232b,0x4086};
- /* log(2**-1022) = - 7.08396418532264106224E2 */
-unsigned short MINLOG[4] = {0xbcd2,0xdd7a,0x232b,0xc086};
-#endif
- /* 2**1024*(1-MACHEP) = 1.7976931348623158E308 */
-unsigned short MAXNUM[4] = {0xffff,0xffff,0xffff,0x7fef};
-unsigned short PI[4] = {0x2d18,0x5444,0x21fb,0x4009};
-unsigned short PIO2[4] = {0x2d18,0x5444,0x21fb,0x3ff9};
-unsigned short PIO4[4] = {0x2d18,0x5444,0x21fb,0x3fe9};
-unsigned short SQRT2[4] = {0x3bcd,0x667f,0xa09e,0x3ff6};
-unsigned short SQRTH[4] = {0x3bcd,0x667f,0xa09e,0x3fe6};
-unsigned short LOG2E[4] = {0x82fe,0x652b,0x1547,0x3ff7};
-unsigned short SQ2OPI[4] = {0x3651,0x33d4,0x8845,0x3fe9};
-unsigned short LOGE2[4] = {0x39ef,0xfefa,0x2e42,0x3fe6};
-unsigned short LOGSQ2[4] = {0x39ef,0xfefa,0x2e42,0x3fd6};
-unsigned short THPIO4[4] = {0x21d2,0x7f33,0xd97c,0x4002};
-unsigned short TWOOPI[4] = {0xc883,0x6dc9,0x5f30,0x3fe4};
-#ifdef INFINITIES
-unsigned short INFINITY[4] = {0x0000,0x0000,0x0000,0x7ff0};
-#else
-unsigned short INFINITY[4] = {0xffff,0xffff,0xffff,0x7fef};
-#endif
-#ifdef NANS
-unsigned short NAN[4] = {0x0000,0x0000,0x0000,0x7ffc};
-#else
-unsigned short NAN[4] = {0x0000,0x0000,0x0000,0x0000};
-#endif
-#ifdef MINUSZERO
-unsigned short NEGZERO[4] = {0x0000,0x0000,0x0000,0x8000};
-#else
-unsigned short NEGZERO[4] = {0x0000,0x0000,0x0000,0x0000};
-#endif
-#endif
-#ifdef MIEEE
- /* 2**-53 = 1.11022302462515654042E-16 */
-unsigned short MACHEP[4] = {0x3ca0,0x0000,0x0000,0x0000};
-unsigned short UFLOWTHRESH[4] = {0x0010,0x0000,0x0000,0x0000};
-#ifdef DENORMAL
- /* log(2**1024) = 7.09782712893383996843E2 */
-unsigned short MAXLOG[4] = {0x4086,0x2e42,0xfefa,0x39ef};
- /* log(2**-1074) = - -7.44440071921381262314E2 */
-/* unsigned short MINLOG[4] = {0xc087,0x4385,0x446d,0x71c3}; */
-unsigned short MINLOG[4] = {0xc087,0x4910,0xd52d,0x3052};
-#else
- /* log(2**1022) = 7.08396418532264106224E2 */
-unsigned short MAXLOG[4] = {0x4086,0x232b,0xdd7a,0xbcd2};
- /* log(2**-1022) = - 7.08396418532264106224E2 */
-unsigned short MINLOG[4] = {0xc086,0x232b,0xdd7a,0xbcd2};
-#endif
- /* 2**1024*(1-MACHEP) = 1.7976931348623158E308 */
-unsigned short MAXNUM[4] = {0x7fef,0xffff,0xffff,0xffff};
-unsigned short PI[4] = {0x4009,0x21fb,0x5444,0x2d18};
-unsigned short PIO2[4] = {0x3ff9,0x21fb,0x5444,0x2d18};
-unsigned short PIO4[4] = {0x3fe9,0x21fb,0x5444,0x2d18};
-unsigned short SQRT2[4] = {0x3ff6,0xa09e,0x667f,0x3bcd};
-unsigned short SQRTH[4] = {0x3fe6,0xa09e,0x667f,0x3bcd};
-unsigned short LOG2E[4] = {0x3ff7,0x1547,0x652b,0x82fe};
-unsigned short SQ2OPI[4] = {0x3fe9,0x8845,0x33d4,0x3651};
-unsigned short LOGE2[4] = {0x3fe6,0x2e42,0xfefa,0x39ef};
-unsigned short LOGSQ2[4] = {0x3fd6,0x2e42,0xfefa,0x39ef};
-unsigned short THPIO4[4] = {0x4002,0xd97c,0x7f33,0x21d2};
-unsigned short TWOOPI[4] = {0x3fe4,0x5f30,0x6dc9,0xc883};
-#ifdef INFINITIES
-unsigned short INFINITY[4] = {0x7ff0,0x0000,0x0000,0x0000};
-#else
-unsigned short INFINITY[4] = {0x7fef,0xffff,0xffff,0xffff};
-#endif
-#ifdef NANS
-unsigned short NAN[4] = {0x7ff8,0x0000,0x0000,0x0000};
-#else
-unsigned short NAN[4] = {0x0000,0x0000,0x0000,0x0000};
-#endif
-#ifdef MINUSZERO
-unsigned short NEGZERO[4] = {0x8000,0x0000,0x0000,0x0000};
-#else
-unsigned short NEGZERO[4] = {0x0000,0x0000,0x0000,0x0000};
-#endif
-#endif
-
-#ifdef DEC
- /* 2**-56 = 1.38777878078144567553E-17 */
-unsigned short MACHEP[4] = {0022200,0000000,0000000,0000000};
-unsigned short UFLOWTHRESH[4] = {0x0080,0x0000,0x0000,0x0000};
- /* log 2**127 = 88.029691931113054295988 */
-unsigned short MAXLOG[4] = {041660,007463,0143742,025733,};
- /* log 2**-128 = -88.72283911167299960540 */
-unsigned short MINLOG[4] = {0141661,071027,0173721,0147572,};
- /* 2**127 = 1.701411834604692317316873e38 */
-unsigned short MAXNUM[4] = {077777,0177777,0177777,0177777,};
-unsigned short PI[4] = {040511,007732,0121041,064302,};
-unsigned short PIO2[4] = {040311,007732,0121041,064302,};
-unsigned short PIO4[4] = {040111,007732,0121041,064302,};
-unsigned short SQRT2[4] = {040265,002363,031771,0157145,};
-unsigned short SQRTH[4] = {040065,002363,031771,0157144,};
-unsigned short LOG2E[4] = {040270,0125073,024534,013761,};
-unsigned short SQ2OPI[4] = {040114,041051,0117241,0131204,};
-unsigned short LOGE2[4] = {040061,071027,0173721,0147572,};
-unsigned short LOGSQ2[4] = {037661,071027,0173721,0147572,};
-unsigned short THPIO4[4] = {040426,0145743,0174631,007222,};
-unsigned short TWOOPI[4] = {040042,0174603,067116,042025,};
-/* Approximate infinity by MAXNUM. */
-unsigned short INFINITY[4] = {077777,0177777,0177777,0177777,};
-unsigned short NAN[4] = {0000000,0000000,0000000,0000000};
-#ifdef MINUSZERO
-unsigned short NEGZERO[4] = {0000000,0000000,0000000,0100000};
-#else
-unsigned short NEGZERO[4] = {0000000,0000000,0000000,0000000};
-#endif
-#endif
-
-#ifndef UNK
-extern unsigned short MACHEP[];
-extern unsigned short UFLOWTHRESH[];
-extern unsigned short MAXLOG[];
-extern unsigned short UNDLOG[];
-extern unsigned short MINLOG[];
-extern unsigned short MAXNUM[];
-extern unsigned short PI[];
-extern unsigned short PIO2[];
-extern unsigned short PIO4[];
-extern unsigned short SQRT2[];
-extern unsigned short SQRTH[];
-extern unsigned short LOG2E[];
-extern unsigned short SQ2OPI[];
-extern unsigned short LOGE2[];
-extern unsigned short LOGSQ2[];
-extern unsigned short THPIO4[];
-extern unsigned short TWOOPI[];
-extern unsigned short INFINITY[];
-extern unsigned short NAN[];
-extern unsigned short NEGZERO[];
-#endif
-
/* === const.c - end === */
/* === protos.h - start === */
/*
@@ -636,109 +487,95 @@
extern double MAXNUM, MACHEP, PI, PIO2, INFINITY, NAN;
-/*
-typedef struct
- {
- double r;
- double i;
- }cmplx;
-*/
cmplx czero = {0.0, 0.0};
extern cmplx czero;
cmplx cone = {1.0, 0.0};
extern cmplx cone;
/* c = b + a */
-
void cadd( a, b, c )
-register cmplx *a, *b;
-cmplx *c;
+ register cmplx *a, *b;
+ cmplx *c;
{
-
-c->r = b->r + a->r;
-c->i = b->i + a->i;
+ c->r = b->r + a->r;
+ c->i = b->i + a->i;
}
/* c = b - a */
-
void csub( a, b, c )
-register cmplx *a, *b;
-cmplx *c;
+ register cmplx *a, *b;
+ cmplx *c;
{
-
-c->r = b->r - a->r;
-c->i = b->i - a->i;
+ c->r = b->r - a->r;
+ c->i = b->i - a->i;
}
/* c = b * a */
-
void cmul( a, b, c )
-register cmplx *a, *b;
-cmplx *c;
+ register cmplx *a, *b;
+ cmplx *c;
{
-double y;
-
-y = b->r * a->r - b->i * a->i;
-c->i = b->r * a->i + b->i * a->r;
-c->r = y;
+ double y;
+ y = b->r * a->r - b->i * a->i;
+ c->i = b->r * a->i + b->i * a->r;
+ c->r = y;
}
/* c = b / a */
-
void cdiv( a, b, c )
-register cmplx *a, *b;
-cmplx *c;
+ register cmplx *a, *b;
+ cmplx *c;
{
-double y, p, q, w;
-
-
-y = a->r * a->r + a->i * a->i;
-p = b->r * a->r + b->i * a->i;
-q = b->i * a->r - b->r * a->i;
-
-if( y < 1.0 )
- {
- w = MAXNUM * y;
- if( (fabs(p) > w) || (fabs(q) > w) || (y == 0.0) )
- {
- c->r = MAXNUM;
- c->i = MAXNUM;
- mtherr( "cdiv", OVERFLOW );
- return;
- }
- }
-c->r = p/y;
-c->i = q/y;
+ double y, p, q, w;
+
+
+ y = a->r * a->r + a->i * a->i;
+ p = b->r * a->r + b->i * a->i;
+ q = b->i * a->r - b->r * a->i;
+
+ if( y < 1.0 )
+ {
+ w = MAXNUM * y;
+ if( (fabs(p) > w) || (fabs(q) > w) || (y == 0.0) )
+ {
+ c->r = MAXNUM;
+ c->i = MAXNUM;
+ mtherr( "cdiv", OVERFLOW );
+ return;
+ }
+ }
+ c->r = p/y;
+ c->i = q/y;
}
/* b = a
- Caution, a `short' is assumed to be 16 bits wide. */
+ Caution, a `short' is assumed to be 16 bits wide. */
void cmov( a, b )
-void *a, *b;
+ void *a, *b;
{
-register short *pa, *pb;
-int i;
-
-pa = (short *) a;
-pb = (short *) b;
-i = 8;
-do
- *pb++ = *pa++;
-while( --i );
+ register short *pa, *pb;
+ int i;
+
+ pa = (short *) a;
+ pb = (short *) b;
+ i = 8;
+ do
+ *pb++ = *pa++;
+ while( --i );
}
void cneg( a )
-register cmplx *a;
+ register cmplx *a;
{
-
-a->r = -a->r;
-a->i = -a->i;
+
+ a->r = -a->r;
+ a->i = -a->i;
}
/* cabs()
@@ -779,103 +616,79 @@
* IEEE -10,+10 100000 2.7e-16 6.9e-17
*/
-/*
-typedef struct
- {
- double r;
- double i;
- }cmplx;
-*/
-
-#ifdef UNK
#define PREC 27
#define MAXEXP 1024
#define MINEXP -1077
-#endif
-#ifdef DEC
-#define PREC 29
-#define MAXEXP 128
-#define MINEXP -128
-#endif
-#ifdef IBMPC
-#define PREC 27
-#define MAXEXP 1024
-#define MINEXP -1077
-#endif
-#ifdef MIEEE
-#define PREC 27
-#define MAXEXP 1024
-#define MINEXP -1077
-#endif
double cabs( z )
-register cmplx *z;
+ register cmplx *z;
{
-double x, y, b, re, im;
-int ex, ey, e;
-
+ double x, y, b, re, im;
+ int ex, ey, e;
+
#ifdef INFINITIES
-/* Note, cabs(INFINITY,NAN) = INFINITY. */
-if( z->r == INFINITY || z->i == INFINITY
- || z->r == -INFINITY || z->i == -INFINITY )
- return( INFINITY );
+ /* Note, cabs(INFINITY,NAN) = INFINITY. */
+ if( z->r == INFINITY || z->i == INFINITY
+ || z->r == -INFINITY || z->i == -INFINITY )
+ return( INFINITY );
#endif
-
+
#ifdef NANS
-if( isnan(z->r) )
- return(z->r);
-if( isnan(z->i) )
- return(z->i);
+ if( isnan(z->r) )
+ return(z->r);
+ if( isnan(z->i) )
+ return(z->i);
#endif
-
-re = fabs( z->r );
-im = fabs( z->i );
-
-if( re == 0.0 )
- return( im );
-if( im == 0.0 )
- return( re );
-
-/* Get the exponents of the numbers */
-x = frexp( re, &ex );
-y = frexp( im, &ey );
-
-/* Check if one number is tiny compared to the other */
-e = ex - ey;
-if( e > PREC )
- return( re );
-if( e < -PREC )
- return( im );
-
-/* Find approximate exponent e of the geometric mean. */
-e = (ex + ey) >> 1;
-
-/* Rescale so mean is about 1 */
-x = ldexp( re, -e );
-y = ldexp( im, -e );
-
-/* Hypotenuse of the right triangle */
-b = sqrt( x * x + y * y );
-
-/* Compute the exponent of the answer. */
-y = frexp( b, &ey );
-ey = e + ey;
-
-/* Check it for overflow and underflow. */
-if( ey > MAXEXP )
- {
- mtherr( "cabs", OVERFLOW );
- return( INFINITY );
- }
-if( ey < MINEXP )
- return(0.0);
-
-/* Undo the scaling */
-b = ldexp( b, e );
-return( b );
+
+ re = fabs( z->r );
+ im = fabs( z->i );
+
+ if( re == 0.0 )
+ return( im );
+ if( im == 0.0 )
+ return( re );
+
+ /* Get the exponents of the numbers */
+ x = frexp( re, &ex );
+ y = frexp( im, &ey );
+
+ /* Check if one number is tiny compared to the other */
+ e = ex - ey;
+ if( e > PREC )
+ return( re );
+ if( e < -PREC )
+ return( im );
+
+ /* Find approximate exponent e of the geometric mean. */
+ e = (ex + ey) >> 1;
+
+ /* Rescale so mean is about 1 */
+ x = ldexp( re, -e );
+ y = ldexp( im, -e );
+
+ /* Hypotenuse of the right triangle */
+ b = sqrt( x * x + y * y );
+
+ /* Compute the exponent of the answer. */
+ y = frexp( b, &ey );
+ ey = e + ey;
+
+ /* Check it for overflow and underflow. */
+ if( ey > MAXEXP )
+ {
+ mtherr( "cabs", OVERFLOW );
+ return( INFINITY );
+ }
+ if( ey < MINEXP )
+ return(0.0);
+
+ /* Undo the scaling */
+ b = ldexp( b, e );
+ return( b );
}
-/* csqrt()
+
+/* csqrt()
*
* Complex square root
*
@@ -921,80 +734,80 @@
* Also tested by csqrt( z ) = z, and tested by arguments
* close to the real axis.
*/
-
void csqrt( z, w )
-cmplx *z, *w;
+ cmplx *z, *w;
{
-cmplx q, s;
-double x, y, r, t;
-
-x = z->r;
-y = z->i;
-
-if( y == 0.0 )
- {
- if( x < 0.0 )
- {
- w->r = 0.0;
- w->i = sqrt(-x);
- return;
- }
- else
- {
- w->r = sqrt(x);
- w->i = 0.0;
- return;
- }
- }
-
-
-if( x == 0.0 )
- {
- r = fabs(y);
- r = sqrt(0.5*r);
- if( y > 0 )
- w->r = r;
- else
- w->r = -r;
- w->i = r;
- return;
- }
-
-/* Approximate sqrt(x^2+y^2) - x = y^2/2x - y^4/24x^3 + ... .
- * The relative error in the first term is approximately y^2/12x^2 .
- */
-if( (fabs(y) < 2.e-4 * fabs(x))
- && (x > 0) )
- {
- t = 0.25*y*(y/x);
- }
-else
- {
- r = cabs(z);
- t = 0.5*(r - x);
- }
-
-r = sqrt(t);
-q.i = r;
-q.r = y/(2.0*r);
-/* Heron iteration in complex arithmetic */
-cdiv( &q, z, &s );
-cadd( &q, &s, w );
-w->r *= 0.5;
-w->i *= 0.5;
+ cmplx q, s;
+ double x, y, r, t;
+
+ x = z->r;
+ y = z->i;
+
+ if( y == 0.0 )
+ {
+ if( x < 0.0 )
+ {
+ w->r = 0.0;
+ w->i = sqrt(-x);
+ return;
+ }
+ else
+ {
+ w->r = sqrt(x);
+ w->i = 0.0;
+ return;
+ }
+ }
+
+
+ if( x == 0.0 )
+ {
+ r = fabs(y);
+ r = sqrt(0.5*r);
+ if( y > 0 )
+ w->r = r;
+ else
+ w->r = -r;
+ w->i = r;
+ return;
+ }
+
+ /* Approximate sqrt(x^2+y^2) - x = y^2/2x - y^4/24x^3 + ... .
+ * The relative error in the first term is approximately y^2/12x^2 .
+ */
+ if( (fabs(y) < 2.e-4 * fabs(x))
+ && (x > 0) )
+ {
+ t = 0.25*y*(y/x);
+ }
+ else
+ {
+ r = cabs(z);
+ t = 0.5*(r - x);
+ }
+
+ r = sqrt(t);
+ q.i = r;
+ q.r = y/(2.0*r);
+ /* Heron iteration in complex arithmetic */
+ cdiv( &q, z, &s );
+ cadd( &q, &s, w );
+ w->r *= 0.5;
+ w->i *= 0.5;
}
double hypot( x, y )
-double x, y;
+ double x, y;
{
-cmplx z;
-
-z.r = x;
-z.i = y;
-return( cabs(&z) );
+ cmplx z;
+
+ z.r = x;
+ z.i = y;
+ return( cabs(&z) );
}
+
/* === cmplx.c - end === */
/* === ellik.c - start === */
/* ellik.c
@@ -1057,82 +870,83 @@
extern double PI, PIO2, MACHEP, MAXNUM;
double ellik( phi, m )
-double phi, m;
+ double phi, m;
{
-double a, b, c, e, temp, t, K;
-int d, mod, sign, npio2;
-
-if( m == 0.0 )
- return( phi );
-a = 1.0 - m;
-if( a == 0.0 )
- {
- if( fabs(phi) >= PIO2 )
- {
- mtherr( "ellik", SING );
- return( MAXNUM );
- }
- return( log( tan( (PIO2 + phi)/2.0 ) ) );
- }
-npio2 = floor( phi/PIO2 );
-if( npio2 & 1 )
- npio2 += 1;
-if( npio2 )
- {
- K = ellpk( a );
- phi = phi - npio2 * PIO2;
- }
-else
- K = 0.0;
-if( phi < 0.0 )
- {
- phi = -phi;
- sign = -1;
- }
-else
- sign = 0;
-b = sqrt(a);
-t = tan( phi );
-if( fabs(t) > 10.0 )
- {
- /* Transform the amplitude */
- e = 1.0/(b*t);
- /* ... but avoid multiple recursions. */
- if( fabs(e) < 10.0 )
- {
- e = atan(e);
- if( npio2 == 0 )
- K = ellpk( a );
- temp = K - ellik( e, m );
- goto done;
- }
- }
-a = 1.0;
-c = sqrt(m);
-d = 1;
-mod = 0;
-
-while( fabs(c/a) > MACHEP )
- {
- temp = b/a;
- phi = phi + atan(t*temp) + mod * PI;
- mod = (phi + PIO2)/PI;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = ( a - b )/2.0;
- temp = sqrt( a * b );
- a = ( a + b )/2.0;
- b = temp;
- d += d;
- }
-
-temp = (atan(t) + mod * PI)/(d * a);
-
-done:
-if( sign < 0 )
- temp = -temp;
-temp += npio2 * K;
-return( temp );
+ double a, b, c, e, temp, t, K;
+ int d, mod, sign, npio2;
+
+ if( m == 0.0 )
+ return( phi );
+ a = 1.0 - m;
+ if( a == 0.0 )
+ {
+ if( fabs(phi) >= PIO2 )
+ {
+ mtherr( "ellik", SING );
+ return( MAXNUM );
+ }
+ return( log( tan( (PIO2 + phi)/2.0 ) ) );
+ }
+ npio2 = floor( phi/PIO2 );
+ if( npio2 & 1 )
+ npio2 += 1;
+ if( npio2 )
+ {
+ K = ellpk( a );
+ phi = phi - npio2 * PIO2;
+ }
+ else
+ K = 0.0;
+ if( phi < 0.0 )
+ {
+ phi = -phi;
+ sign = -1;
+ }
+ else
+ sign = 0;
+ b = sqrt(a);
+ t = tan( phi );
+ if( fabs(t) > 10.0 )
+ {
+ /* Transform the amplitude */
+ e = 1.0/(b*t);
+ /* ... but avoid multiple recursions. */
+ if( fabs(e) < 10.0 )
+ {
+ e = atan(e);
+ if( npio2 == 0 )
+ K = ellpk( a );
+ temp = K - ellik( e, m );
+ goto done;
+ }
+ }
+ a = 1.0;
+ c = sqrt(m);
+ d = 1;
+ mod = 0;
+
+ while( fabs(c/a) > MACHEP )
+ {
+ temp = b/a;
+ phi = phi + atan(t*temp) + mod * PI;
+ mod = (phi + PIO2)/PI;
+ t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
+ c = ( a - b )/2.0;
+ temp = sqrt( a * b );
+ a = ( a + b )/2.0;
+ b = temp;
+ d += d;
+ }
+
+ temp = (atan(t) + mod * PI)/(d * a);
+
+ done:
+ if( sign < 0 )
+ temp = -temp;
+ temp += npio2 * K;
+ return( temp );
}
+
/* === ellik.c - end === */
/* === ellpe.c - start === */
/* ellpe.c
@@ -1186,12 +1000,10 @@
* ellpe domain x<0, x>1 0.0
*
*/
-
/* ellpe.c */
/* Elliptic integral of second kind */
-#ifdef UNK
static double P_ellpe[] = {
1.53552577301013293365E-4,
2.50888492163602060990E-3,
@@ -1217,107 +1029,23 @@
9.37499997197644278445E-2,
2.49999999999888314361E-1
};
-#endif
-#ifdef DEC
-static unsigned short P[] = {
-0035041,0001364,0141572,0117555,
-0036044,0066032,0130027,0033404,
-0036416,0053617,0064456,0102632,
-0036457,0161100,0061177,0122612,
-0036376,0136251,0012403,0124162,
-0036370,0101316,0151715,0131613,
-0036475,0105477,0050317,0133272,
-0036662,0154232,0024645,0171552,
-0037150,0126220,0047054,0030064,
-0037742,0162057,0167645,0165612,
-0040200,0000000,0000000,0000000
-};
-static unsigned short Q[] = {
-0034411,0106743,0115771,0055462,
-0035604,0052575,0155171,0045540,
-0036325,0030424,0064332,0167756,
-0036612,0052366,0063006,0115175,
-0036726,0070430,0004533,0124654,
-0037011,0022741,0030675,0030711,
-0037056,0174452,0127062,0132122,
-0037157,0177750,0142041,0072523,
-0037277,0177777,0173137,0002627,
-0037577,0177777,0177777,0101101
-};
-#endif
-#ifdef IBMPC
-static unsigned short P[] = {
-0x53ee,0x986f,0x205e,0x3f24,
-0xe6e0,0x5602,0x8d83,0x3f64,
-0xd0b3,0xed25,0xcaf1,0x3f81,
-0xf4b1,0x0c4f,0xfc48,0x3f85,
-0x750e,0x22a0,0xd795,0x3f7f,
-0xb671,0xda79,0x1059,0x3f7f,
-0xf6d7,0xea19,0xb167,0x3f87,
-0xbe6d,0x4534,0x5b13,0x3f96,
-0x8607,0x09c5,0x1592,0x3fad,
-0xbd71,0xfdf4,0x5c85,0x3fdc,
-0x0000,0x0000,0x0000,0x3ff0
-};
-static unsigned short Q[] = {
-0x2b66,0x737f,0x31bc,0x3f01,
-0x296c,0xbb4f,0x8aaf,0x3f50,
-0x5dfe,0x8d1b,0xa622,0x3f7a,
-0xd350,0xccc0,0x4a9e,0x3f91,
-0x7535,0x012b,0xce23,0x3f9a,
-0xa639,0x2637,0x24bc,0x3fa1,
-0x568a,0x55c6,0xdf25,0x3fa5,
-0x2eaa,0x1884,0xfffd,0x3fad,
-0xe0b3,0xfecb,0xffff,0x3fb7,
-0xf048,0xffff,0xffff,0x3fcf
-};
-#endif
-
-#ifdef MIEEE
-static unsigned short P[] = {
-0x3f24,0x205e,0x986f,0x53ee,
-0x3f64,0x8d83,0x5602,0xe6e0,
-0x3f81,0xcaf1,0xed25,0xd0b3,
-0x3f85,0xfc48,0x0c4f,0xf4b1,
-0x3f7f,0xd795,0x22a0,0x750e,
-0x3f7f,0x1059,0xda79,0xb671,
-0x3f87,0xb167,0xea19,0xf6d7,
-0x3f96,0x5b13,0x4534,0xbe6d,
-0x3fad,0x1592,0x09c5,0x8607,
-0x3fdc,0x5c85,0xfdf4,0xbd71,
-0x3ff0,0x0000,0x0000,0x0000
-};
-static unsigned short Q[] = {
-0x3f01,0x31bc,0x737f,0x2b66,
-0x3f50,0x8aaf,0xbb4f,0x296c,
-0x3f7a,0xa622,0x8d1b,0x5dfe,
-0x3f91,0x4a9e,0xccc0,0xd350,
-0x3f9a,0xce23,0x012b,0x7535,
-0x3fa1,0x24bc,0x2637,0xa639,
-0x3fa5,0xdf25,0x55c6,0x568a,
-0x3fad,0xfffd,0x1884,0x2eaa,
-0x3fb7,0xffff,0xfecb,0xe0b3,
-0x3fcf,0xffff,0xffff,0xf048
-};
-#endif
-
extern double polevl ( double, double[], int );
extern double log ( double );
double ellpe(x)
-double x;
+ double x;
{
-
-if( (x <= 0.0) || (x > 1.0) )
- {
- if( x == 0.0 )
- return( 1.0 );
- mtherr( "ellpe", DOMAIN );
- return( 0.0 );
- }
-return( polevl(x,P_ellpe,10) - log(x) * (x * polevl(x,Q_ellpe,9)) );
+
+ if( (x <= 0.0) || (x > 1.0) )
+ {
+ if( x == 0.0 )
+ return( 1.0 );
+ mtherr( "ellpe", DOMAIN );
+ return( 0.0 );
+ }
+ return( polevl(x,P_ellpe,10) - log(x) * (x * polevl(x,Q_ellpe,9)) );
}
/* === ellpe.c - end === */
/* === ellpj.c - start === */
@@ -1382,96 +1110,96 @@
extern double PIO2, MACHEP;
int ellpj( u, m, sn, cn, dn, ph )
-double u, m;
-double *sn, *cn, *dn, *ph;
+ double u, m;
+ double *sn, *cn, *dn, *ph;
{
-double ai, b, phi, t, twon;
-double sqrt(), fabs(), sin(), cos(), asin(), tanh();
-double sinh(), cosh(), atan(), exp();
-double a[9], c[9];
-int i;
-
-
-/* Check for special cases */
-
-if( m < 0.0 || m > 1.0 )
- {
- mtherr( "ellpj", DOMAIN );
- *sn = 0.0;
- *cn = 0.0;
- *ph = 0.0;
- *dn = 0.0;
- return(-1);
- }
-if( m < 1.0e-9 )
- {
- t = sin(u);
- b = cos(u);
- ai = 0.25 * m * (u - t*b);
- *sn = t - ai*b;
- *cn = b + ai*t;
- *ph = u - ai;
- *dn = 1.0 - 0.5*m*t*t;
- return(0);
- }
-
-if( m >= 0.9999999999 )
- {
- ai = 0.25 * (1.0-m);
- b = cosh(u);
- t = tanh(u);
- phi = 1.0/b;
- twon = b * sinh(u);
- *sn = t + ai * (twon - u)/(b*b);
- *ph = 2.0*atan(exp(u)) - PIO2 + ai*(twon - u)/b;
- ai *= t * phi;
- *cn = phi - ai * (twon - u);
- *dn = phi + ai * (twon + u);
- return(0);
- }
-
-
-/* A. G. M. scale */
-a[0] = 1.0;
-b = sqrt(1.0 - m);
-c[0] = sqrt(m);
-twon = 1.0;
-i = 0;
-
-while( fabs(c[i]/a[i]) > MACHEP )
- {
- if( i > 7 )
- {
- mtherr( "ellpj", OVERFLOW );
- goto done;
- }
- ai = a[i];
- ++i;
- c[i] = ( ai - b )/2.0;
- t = sqrt( ai * b );
- a[i] = ( ai + b )/2.0;
- b = t;
- twon *= 2.0;
- }
-
-done:
-
-/* backward recurrence */
-phi = twon * a[i] * u;
-do
- {
- t = c[i] * sin(phi) / a[i];
- b = phi;
- phi = (asin(t) + phi)/2.0;
- }
-while( --i );
-
-*sn = sin(phi);
-t = cos(phi);
-*cn = t;
-*dn = t/cos(phi-b);
-*ph = phi;
-return(0);
+ double ai, b, phi, t, twon;
+ double sqrt(), fabs(), sin(), cos(), asin(), tanh();
+ double sinh(), cosh(), atan(), exp();
+ double a[9], c[9];
+ int i;
+
+
+ /* Check for special cases */
+
+ if( m < 0.0 || m > 1.0 )
+ {
+ mtherr( "ellpj", DOMAIN );
+ *sn = 0.0;
+ *cn = 0.0;
+ *ph = 0.0;
+ *dn = 0.0;
+ return(-1);
+ }
+ if( m < 1.0e-9 )
+ {
+ t = sin(u);
+ b = cos(u);
+ ai = 0.25 * m * (u - t*b);
+ *sn = t - ai*b;
+ *cn = b + ai*t;
+ *ph = u - ai;
+ *dn = 1.0 - 0.5*m*t*t;
+ return(0);
+ }
+
+ if( m >= 0.9999999999 )
+ {
+ ai = 0.25 * (1.0-m);
+ b = cosh(u);
+ t = tanh(u);
+ phi = 1.0/b;
+ twon = b * sinh(u);
+ *sn = t + ai * (twon - u)/(b*b);
+ *ph = 2.0*atan(exp(u)) - PIO2 + ai*(twon - u)/b;
+ ai *= t * phi;
+ *cn = phi - ai * (twon - u);
+ *dn = phi + ai * (twon + u);
+ return(0);
+ }
+
+
+ /* A. G. M. scale */
+ a[0] = 1.0;
+ b = sqrt(1.0 - m);
+ c[0] = sqrt(m);
+ twon = 1.0;
+ i = 0;
+
+ while( fabs(c[i]/a[i]) > MACHEP )
+ {
+ if( i > 7 )
+ {
+ mtherr( "ellpj", OVERFLOW );
+ goto done;
+ }
+ ai = a[i];
+ ++i;
+ c[i] = ( ai - b )/2.0;
+ t = sqrt( ai * b );
+ a[i] = ( ai + b )/2.0;
+ b = t;
+ twon *= 2.0;
+ }
+
+ done:
+
+ /* backward recurrence */
+ phi = twon * a[i] * u;
+ do
+ {
+ t = c[i] * sin(phi) / a[i];
+ b = phi;
+ phi = (asin(t) + phi)/2.0;
+ }
+ while( --i );
+
+ *sn = sin(phi);
+ t = cos(phi);
+ *cn = t;
+ *dn = t/cos(phi-b);
+ *ph = phi;
+ return(0);
}
/* === ellpj.c - end === */
/* === ellpk.c - start === */
@@ -1531,139 +1259,38 @@
/* ellpk.c */
-#ifdef DEC
-static unsigned short P[] =
-{
-0035020,0127576,0040430,0051544,
-0036025,0070136,0042703,0153716,
-0036402,0122614,0062555,0077777,
-0036441,0102130,0072334,0025172,
-0036341,0043320,0117242,0172076,
-0036312,0146456,0077242,0154141,
-0036420,0003467,0013727,0035407,
-0036564,0137263,0110651,0020237,
-0036775,0001330,0144056,0020305,
-0037305,0144137,0157521,0141734,
-0040261,0071027,0173721,0147572
-};
-static unsigned short Q[] =
-{
-0034366,0130371,0103453,0077633,
-0035557,0122745,0173515,0113016,
-0036302,0124470,0167304,0074473,
-0036575,0132403,0117226,0117576,
-0036703,0156271,0047124,0147733,
-0036766,0137465,0002053,0157312,
-0037031,0014423,0154274,0176515,
-0037107,0177747,0143216,0016145,
-0037217,0177777,0172621,0074000,
-0037377,0177777,0177776,0156435,
-0040000,0000000,0000000,0000000
-};
-static unsigned short ac1[] = {0040261,0071027,0173721,0147572};
-#define C1 (*(double *)ac1)
-#endif
-#ifdef IBMPC
-static unsigned short P[] =
-{
-0x0a6d,0xc823,0x15ef,0x3f22,
-0x7afa,0xc8b8,0xae0b,0x3f62,
-0xb000,0x8cad,0x54b1,0x3f80,
-0x854f,0x0e9b,0x308b,0x3f84,
-0x5e88,0x13d4,0x28da,0x3f7c,
-0x5b0c,0xcfd4,0x59a5,0x3f79,
-0xe761,0xe2fa,0x00e6,0x3f82,
-0x2414,0x7235,0x97d6,0x3f8e,
-0xc419,0x1905,0xa05b,0x3f9f,
-0x387c,0xfbea,0xb90b,0x3fb8,
-0x39ef,0xfefa,0x2e42,0x3ff6
-};
-static unsigned short Q[] =
-{
-0x6ff3,0x30e5,0xd61f,0x3efe,
-0xb2c2,0xbee9,0xf4bc,0x3f4d,
-0x8f27,0x1dd8,0x5527,0x3f78,
-0xd3f0,0x73d2,0xb6a0,0x3f8f,
-0x99fb,0x29ca,0x7b97,0x3f98,
-0x7bd9,0xa085,0xd7e6,0x3f9e,
-0x9faa,0x7b17,0x2322,0x3fa3,
-0xc38d,0xf8d1,0xfffc,0x3fa8,
-0x2f00,0xfeb2,0xffff,0x3fb1,
-0xdba4,0xffff,0xffff,0x3fbf,
-0x0000,0x0000,0x0000,0x3fe0
-};
-static unsigned short ac1[] = {0x39ef,0xfefa,0x2e42,0x3ff6};
-#define C1 (*(double *)ac1)
-#endif
-#ifdef MIEEE
-static unsigned short P[] =
-{
-0x3f22,0x15ef,0xc823,0x0a6d,
-0x3f62,0xae0b,0xc8b8,0x7afa,
-0x3f80,0x54b1,0x8cad,0xb000,
-0x3f84,0x308b,0x0e9b,0x854f,
-0x3f7c,0x28da,0x13d4,0x5e88,
-0x3f79,0x59a5,0xcfd4,0x5b0c,
-0x3f82,0x00e6,0xe2fa,0xe761,
-0x3f8e,0x97d6,0x7235,0x2414,
-0x3f9f,0xa05b,0x1905,0xc419,
-0x3fb8,0xb90b,0xfbea,0x387c,
-0x3ff6,0x2e42,0xfefa,0x39ef
-};
-static unsigned short Q[] =
-{
-0x3efe,0xd61f,0x30e5,0x6ff3,
-0x3f4d,0xf4bc,0xbee9,0xb2c2,
-0x3f78,0x5527,0x1dd8,0x8f27,
-0x3f8f,0xb6a0,0x73d2,0xd3f0,
-0x3f98,0x7b97,0x29ca,0x99fb,
-0x3f9e,0xd7e6,0xa085,0x7bd9,
-0x3fa3,0x2322,0x7b17,0x9faa,
-0x3fa8,0xfffc,0xf8d1,0xc38d,
-0x3fb1,0xffff,0xfeb2,0x2f00,
-0x3fbf,0xffff,0xffff,0xdba4,
-0x3fe0,0x0000,0x0000,0x0000
-};
-static unsigned short ac1[] = {
-0x3ff6,0x2e42,0xfefa,0x39ef
-};
-#define C1 (*(double *)ac1)
-#endif
-
-#ifdef UNK
static double P_ellpk[] =
{
- 1.37982864606273237150E-4,
- 2.28025724005875567385E-3,
- 7.97404013220415179367E-3,
- 9.85821379021226008714E-3,
- 6.87489687449949877925E-3,
- 6.18901033637687613229E-3,
- 8.79078273952743772254E-3,
- 1.49380448916805252718E-2,
- 3.08851465246711995998E-2,
- 9.65735902811690126535E-2,
- 1.38629436111989062502E0
+ 1.37982864606273237150E-4,
+ 2.28025724005875567385E-3,
+ 7.97404013220415179367E-3,
+ 9.85821379021226008714E-3,
+ 6.87489687449949877925E-3,
+ 6.18901033637687613229E-3,
+ 8.79078273952743772254E-3,
+ 1.49380448916805252718E-2,
+ 3.08851465246711995998E-2,
+ 9.65735902811690126535E-2,
+ 1.38629436111989062502E0
};
static double Q_ellpk[] =
{
- 2.94078955048598507511E-5,
- 9.14184723865917226571E-4,
- 5.94058303753167793257E-3,
- 1.54850516649762399335E-2,
- 2.39089602715924892727E-2,
- 3.01204715227604046988E-2,
- 3.73774314173823228969E-2,
- 4.88280347570998239232E-2,
- 7.03124996963957469739E-2,
- 1.24999999999870820058E-1,
- 4.99999999999999999821E-1
+ 2.94078955048598507511E-5,
+ 9.14184723865917226571E-4,
+ 5.94058303753167793257E-3,
+ 1.54850516649762399335E-2,
+ 2.39089602715924892727E-2,
+ 3.01204715227604046988E-2,
+ 3.73774314173823228969E-2,
+ 4.88280347570998239232E-2,
+ 7.03124996963957469739E-2,
+ 1.24999999999870820058E-1,
+ 4.99999999999999999821E-1
};
static double C1 = 1.3862943611198906188E0; /* log(4) */
-#endif
extern double polevl ( double, double[], int );
extern double p1evl ( double, double[], int );
@@ -1671,31 +1298,31 @@
extern double MACHEP, MAXNUM;
double ellpk(x)
-double x;
+ double x;
{
-
-if( (x < 0.0) || (x > 1.0) )
- {
- mtherr( "ellpk", DOMAIN );
- return( 0.0 );
- }
-
-if( x > MACHEP )
- {
- return( polevl(x,P_ellpk,10) - log(x) * polevl(x,Q_ellpk,10) );
- }
-else
- {
- if( x == 0.0 )
- {
- mtherr( "ellpk", SING );
- return( MAXNUM );
- }
- else
- {
- return( C1 - 0.5 * log(x) );
- }
- }
+
+ if( (x < 0.0) || (x > 1.0) )
+ {
+ mtherr( "ellpk", DOMAIN );
+ return( 0.0 );
+ }
+
+ if( x > MACHEP )
+ {
+ return( polevl(x,P_ellpk,10) - log(x) * polevl(x,Q_ellpk,10) );
+ }
+ else
+ {
+ if( x == 0.0 )
+ {
+ mtherr( "ellpk", SING );
+ return( MAXNUM );
+ }
+ else
+ {
+ return( C1 - 0.5 * log(x) );
+ }
+ }
}
/* === ellpk.c - end === */
/* === mtherr.c - start === */
@@ -1759,41 +1386,41 @@
* in mconf.h.
*/
static char *ermsg[7] = {
-"unknown", /* error code 0 */
-"domain", /* error code 1 */
-"singularity", /* et seq. */
-"overflow",
-"underflow",
-"total loss of precision",
-"partial loss of precision"
+ "unknown", /* error code 0 */
+ "domain", /* error code 1 */
+ "singularity", /* et seq. */
+ "overflow",
+ "underflow",
+ "total loss of precision",
+ "partial loss of precision"
};
int mtherr( name, code )
-char *name;
-int code;
+ char *name;
+ int code;
{
-
-/* Display string passed by calling program,
- * which is supposed to be the name of the
- * function in which the error occurred:
- */
-printf( "\n%s ", name );
-
-/* Set global error message word */
-merror = code;
-
-/* Display error message defined
- * by the code argument.
- */
-if( (code <= 0) || (code >= 7) )
- code = 0;
-printf( "%s error\n", ermsg[code] );
-
-/* Return to calling
- * program
- */
-return( 0 );
+
+ /* Display string passed by calling program,
+ * which is supposed to be the name of the
+ * function in which the error occurred:
+ */
+ printf( "\n%s ", name );
+
+ /* Set global error message word */
+ merror = code;
+
+ /* Display error message defined
+ * by the code argument.
+ */
+ if( (code <= 0) || (code >= 7) )
+ code = 0;
+ printf( "%s error\n", ermsg[code] );
+
+ /* Return to calling
+ * program
+ */
+ return( 0 );
}
/* === mtherr.c - end === */
/* === polevl.c - start === */
@@ -1843,23 +1470,23 @@
double polevl( x, coef, N )
-double x;
-double coef[];
-int N;
+ double x;
+ double coef[];
+ int N;
{
-double ans;
-int i;
-double *p;
-
-p = coef;
-ans = *p++;
-i = N;
-
-do
- ans = ans * x + *p++;
-while( --i );
-
-return( ans );
+ double ans;
+ int i;
+ double *p;
+
+ p = coef;
+ ans = *p++;
+ i = N;
+
+ do
+ ans = ans * x + *p++;
+ while( --i );
+
+ return( ans );
}
/* p1evl() */
@@ -1869,23 +1496,23 @@
*/
double p1evl( x, coef, N )
-double x;
-double coef[];
-int N;
+ double x;
+ double coef[];
+ int N;
{
-double ans;
-double *p;
-int i;
-
-p = coef;
-ans = x + *p++;
-i = N-1;
-
-do
- ans = ans * x + *p++;
-while( --i );
-
-return( ans );
+ double ans;
+ double *p;
+ int i;
+
+ p = coef;
+ ans = x + *p++;
+ i = N-1;
+
+ do
+ ans = ans * x + *p++;
+ while( --i );
+
+ return( ans );
}
/* === polevl.c - end === */
/* === ellf.c - start === */
@@ -2022,312 +1649,312 @@
int main()
{
-char str[80];
-
-dbfac = 10.0/log(10.0);
-
-top:
-
-printf( "%s ? ", wkind ); /* ask for filter kind */
-gets( str );
-sscanf( str, "%d", &kind );
-printf( "%d\n", kind );
-if( (kind <= 0) || (kind > 3) )
- exit(0);
-
-printf( "%s ? ", salut ); /* ask for filter type */
-gets( str );
-sscanf( str, "%d", &type );
-printf( "%d\n", type );
-if( (type <= 0) || (type > 4) )
- exit(0);
-
-getnum( "Order of filter", &rn ); /* see below for getnum() */
-n = rn;
-if( n <= 0 )
+ char str[80];
+
+ dbfac = 10.0/log(10.0);
+
+ top:
+
+ printf( "%s ? ", wkind ); /* ask for filter kind */
+ gets( str );
+ sscanf( str, "%d", &kind );
+ printf( "%d\n", kind );
+ if( (kind <= 0) || (kind > 3) )
+ exit(0);
+
+ printf( "%s ? ", salut ); /* ask for filter type */
+ gets( str );
+ sscanf( str, "%d", &type );
+ printf( "%d\n", type );
+ if( (type <= 0) || (type > 4) )
+ exit(0);
+
+ getnum( "Order of filter", &rn ); /* see below for getnum() */
+ n = rn;
+ if( n <= 0 )
+ {
+ specerr:
+ printf( "? Specification error\n" );
+ goto top;
+ }
+ rn = n; /* ensure it is an integer */
+ if( kind > 1 ) /* not Butterworth */
+ {
+ getnum( "Passband ripple, db", &dbr );
+ if( dbr <= 0.0 )
+ goto specerr;
+ if( kind == 2 )
+ {
+ /* For Chebyshev filter, ripples go from 1.0 to 1/sqrt(1+eps^2) */
+ phi = exp( 0.5*dbr/dbfac );
+
+ if( (n & 1) == 0 )
+ scale = phi;
+ else
+ scale = 1.0;
+ }
+ else
+ { /* elliptic */
+ eps = exp( dbr/dbfac );
+ scale = 1.0;
+ if( (n & 1) == 0 )
+ scale = sqrt( eps );
+ eps = sqrt( eps - 1.0 );
+ }
+ }
+
+ getnum( "Sampling frequency", &fs );
+ if( fs <= 0.0 )
+ goto specerr;
+
+ fnyq = 0.5 * fs;
+
+ getnum( "Passband edge", &f2 );
+ if( (f2 <= 0.0) || (f2 >= fnyq) )
+ goto specerr;
+
+ if( (type & 1) == 0 )
+ {
+ getnum( "Other passband edge", &f1 );
+ if( (f1 <= 0.0) || (f1 >= fnyq) )
+ goto specerr;
+ }
+ else
+ {
+ f1 = 0.0;
+ }
+
+ if( f2 < f1 )
+ {
+ a = f2;
+ f2 = f1;
+ f1 = a;
+ }
+ if( type == 3 ) /* high pass */
+ {
+ bw = f2;
+ a = fnyq;
+ }
+ else
+ {
+ bw = f2 - f1;
+ a = f2;
+ }
+ /* Frequency correspondence for bilinear transformation
+ *
+ * Wanalog = tan( 2 pi Fdigital T / 2 )
+ *
+ * where T = 1/fs
+ */
+ ang = bw * PI / fs;
+ cang = cos( ang );
+ c = sin(ang) / cang; /* Wanalog */
+ if( kind != 3 )
+ {
+ wc = c;
+ /*printf( "cos( 1/2 (Whigh-Wlow) T ) = %.5e, wc = %.5e\n", cang, wc );*/
+ }
+
+
+ if( kind == 3 )
+ { /* elliptic */
+ cgam = cos( (a+f1) * PI / fs ) / cang;
+ getnum( "Stop band edge or -(db down)", &dbd );
+ if( dbd > 0.0 )
+ f3 = dbd;
+ else
+ { /* calculate band edge from db down */
+ a = exp( -dbd/dbfac );
+ m1 = eps/sqrt( a - 1.0 );
+ m1 *= m1;
+ m1p = 1.0 - m1;
+ Kk1 = ellpk( m1p );
+ Kpk1 = ellpk( m1 );
+ q = exp( -PI * Kpk1 / (rn * Kk1) );
+ k = cay(q);
+ if( type >= 3 )
+ wr = k;
+ else
+ wr = 1.0/k;
+ if( type & 1 )
+ {
+ f3 = atan( c * wr ) * fs / PI;
+ }
+ else
+ {
+ a = c * wr;
+ a *= a;
+ b = a * (1.0 - cgam * cgam) + a * a;
+ b = (cgam + sqrt(b))/(1.0 + a);
+ f3 = (PI/2.0 - asin(b)) * fs / (2.0*PI);
+ }
+ }
+ switch( type )
{
-specerr:
- printf( "? Specification error\n" );
- goto top;
- }
-rn = n; /* ensure it is an integer */
-if( kind > 1 ) /* not Butterworth */
- {
- getnum( "Passband ripple, db", &dbr );
- if( dbr <= 0.0 )
- goto specerr;
- if( kind == 2 )
- {
-/* For Chebyshev filter, ripples go from 1.0 to 1/sqrt(1+eps^2) */
- phi = exp( 0.5*dbr/dbfac );
-
- if( (n & 1) == 0 )
- scale = phi;
- else
- scale = 1.0;
- }
- else
- { /* elliptic */
- eps = exp( dbr/dbfac );
- scale = 1.0;
- if( (n & 1) == 0 )
- scale = sqrt( eps );
- eps = sqrt( eps - 1.0 );
- }
- }
-
-getnum( "Sampling frequency", &fs );
-if( fs <= 0.0 )
- goto specerr;
-
-fnyq = 0.5 * fs;
-
-getnum( "Passband edge", &f2 );
-if( (f2 <= 0.0) || (f2 >= fnyq) )
- goto specerr;
-
-if( (type & 1) == 0 )
- {
- getnum( "Other passband edge", &f1 );
- if( (f1 <= 0.0) || (f1 >= fnyq) )
- goto specerr;
- }
-else
- {
- f1 = 0.0;
- }
-
-if( f2 < f1 )
- {
- a = f2;
- f2 = f1;
- f1 = a;
- }
-if( type == 3 ) /* high pass */
- {
- bw = f2;
- a = fnyq;
- }
-else
- {
- bw = f2 - f1;
- a = f2;
- }
-/* Frequency correspondence for bilinear transformation
- *
- * Wanalog = tan( 2 pi Fdigital T / 2 )
- *
- * where T = 1/fs
- */
-ang = bw * PI / fs;
-cang = cos( ang );
-c = sin(ang) / cang; /* Wanalog */
-if( kind != 3 )
- {
- wc = c;
-/*printf( "cos( 1/2 (Whigh-Wlow) T ) = %.5e, wc = %.5e\n", cang, wc );*/
- }
-
-
-if( kind == 3 )
- { /* elliptic */
- cgam = cos( (a+f1) * PI / fs ) / cang;
- getnum( "Stop band edge or -(db down)", &dbd );
- if( dbd > 0.0 )
- f3 = dbd;
- else
- { /* calculate band edge from db down */
- a = exp( -dbd/dbfac );
- m1 = eps/sqrt( a - 1.0 );
- m1 *= m1;
- m1p = 1.0 - m1;
- Kk1 = ellpk( m1p );
- Kpk1 = ellpk( m1 );
- q = exp( -PI * Kpk1 / (rn * Kk1) );
- k = cay(q);
- if( type >= 3 )
- wr = k;
- else
- wr = 1.0/k;
- if( type & 1 )
- {
- f3 = atan( c * wr ) * fs / PI;
- }
- else
- {
- a = c * wr;
- a *= a;
- b = a * (1.0 - cgam * cgam) + a * a;
- b = (cgam + sqrt(b))/(1.0 + a);
- f3 = (PI/2.0 - asin(b)) * fs / (2.0*PI);
- }
- }
-switch( type )
- {
case 1:
- if( f3 <= f2 )
- goto specerr;
- break;
-
+ if( f3 <= f2 )
+ goto specerr;
+ break;
+
case 2:
- if( (f3 > f2) || (f3 < f1) )
- break;
- goto specerr;
-
+ if( (f3 > f2) || (f3 < f1) )
+ break;
+ goto specerr;
+
case 3:
- if( f3 >= f2 )
- goto specerr;
- break;
-
+ if( f3 >= f2 )
+ goto specerr;
+ break;
+
case 4:
- if( (f3 <= f1) || (f3 >= f2) )
- goto specerr;
- break;
+ if( (f3 <= f1) || (f3 >= f2) )
+ goto specerr;
+ break;
}
-ang = f3 * PI / fs;
-cang = cos(ang);
-sang = sin(ang);
-
-if( type & 1 )
+ ang = f3 * PI / fs;
+ cang = cos(ang);
+ sang = sin(ang);
+
+ if( type & 1 )
{
- wr = sang/(cang*c);
+ wr = sang/(cang*c);
}
-else
+ else
{
- q = cang * cang - sang * sang;
- sang = 2.0 * cang * sang;
- cang = q;
- wr = (cgam - cang)/(sang * c);
+ q = cang * cang - sang * sang;
+ sang = 2.0 * cang * sang;
+ cang = q;
+ wr = (cgam - cang)/(sang * c);
}
-
-if( type >= 3 )
+
+ if( type >= 3 )
wr = 1.0/wr;
-if( wr < 0.0 )
+ if( wr < 0.0 )
wr = -wr;
-y[0] = 1.0;
-y[1] = wr;
-cbp = wr;
-
-if( type >= 3 )
+ y[0] = 1.0;
+ y[1] = wr;
+ cbp = wr;
+
+ if( type >= 3 )
y[1] = 1.0/y[1];
-
-if( type & 1 )
+
+ if( type & 1 )
{
- for( i=1; i<=2; i++ )
- {
- aa[i] = atan( c * y[i-1] ) * fs / PI ;
- }
- printf( "pass band %.9E\n", aa[1] );
- printf( "stop band %.9E\n", aa[2] );
+ for( i=1; i<=2; i++ )
+ {
+ aa[i] = atan( c * y[i-1] ) * fs / PI ;
+ }
+ printf( "pass band %.9E\n", aa[1] );
+ printf( "stop band %.9E\n", aa[2] );
}
-else
+ else
{
- for( i=1; i<=2; i++ )
- {
- a = c * y[i-1];
- b = atan(a);
- q = sqrt( 1.0 + a * a - cgam * cgam );
+ for( i=1; i<=2; i++ )
+ {
+ a = c * y[i-1];
+ b = atan(a);
+ q = sqrt( 1.0 + a * a - cgam * cgam );
#ifdef ANSIC
- q = atan2( q, cgam );
+ q = atan2( q, cgam );
#else
- q = atan2( cgam, q );
+ q = atan2( cgam, q );
#endif
- aa[i] = (q + b) * fnyq / PI;
- pp[i] = (q - b) * fnyq / PI;
- }
- printf( "pass band %.9E %.9E\n", pp[1], aa[1] );
- printf( "stop band %.9E %.9E\n", pp[2], aa[2] );
+ aa[i] = (q + b) * fnyq / PI;
+ pp[i] = (q - b) * fnyq / PI;
+ }
+ printf( "pass band %.9E %.9E\n", pp[1], aa[1] );
+ printf( "stop band %.9E %.9E\n", pp[2], aa[2] );
}
-lampln(); /* find locations in lambda plane */
-if( (2*n+2) > ARRSIZ )
+ lampln(); /* find locations in lambda plane */
+ if( (2*n+2) > ARRSIZ )
goto toosml;
- }
-
-/* Transformation from low-pass to band-pass critical frequencies
- *
- * Center frequency
- * cos( 1/2 (Whigh+Wlow) T )
- * cos( Wcenter T ) = ----------------------
- * cos( 1/2 (Whigh-Wlow) T )
- *
- *
- * Band edges
- * cos( Wcenter T) - cos( Wdigital T )
- * Wanalog = -----------------------------------
- * sin( Wdigital T )
- */
-
-if( kind == 2 )
- { /* Chebyshev */
- a = PI * (a+f1) / fs ;
- cgam = cos(a) / cang;
- a = 2.0 * PI * f2 / fs;
- cbp = (cgam - cos(a))/sin(a);
- }
-if( kind == 1 )
- { /* Butterworth */
- a = PI * (a+f1) / fs ;
- cgam = cos(a) / cang;
- a = 2.0 * PI * f2 / fs;
- cbp = (cgam - cos(a))/sin(a);
- scale = 1.0;
- }
-
-spln(); /* find s plane poles and zeros */
-
-if( ((type & 1) == 0) && ((4*n+2) > ARRSIZ) )
- goto toosml;
-
-zplna(); /* convert s plane to z plane */
-zplnb();
-zplnc();
-xfun(); /* tabulate transfer function */
-goto top;
-
-toosml:
-printf( "Cannot continue, storage arrays too small\n" );
-goto top;
+ }
+
+ /* Transformation from low-pass to band-pass critical frequencies
+ *
+ * Center frequency
+ * cos( 1/2 (Whigh+Wlow) T )
+ * cos( Wcenter T ) = ----------------------
+ * cos( 1/2 (Whigh-Wlow) T )
+ *
+ *
+ * Band edges
+ * cos( Wcenter T) - cos( Wdigital T )
+ * Wanalog = -----------------------------------
+ * sin( Wdigital T )
+ */
+
+ if( kind == 2 )
+ { /* Chebyshev */
+ a = PI * (a+f1) / fs ;
+ cgam = cos(a) / cang;
+ a = 2.0 * PI * f2 / fs;
+ cbp = (cgam - cos(a))/sin(a);
+ }
+ if( kind == 1 )
+ { /* Butterworth */
+ a = PI * (a+f1) / fs ;
+ cgam = cos(a) / cang;
+ a = 2.0 * PI * f2 / fs;
+ cbp = (cgam - cos(a))/sin(a);
+ scale = 1.0;
+ }
+
+ spln(); /* find s plane poles and zeros */
+
+ if( ((type & 1) == 0) && ((4*n+2) > ARRSIZ) )
+ goto toosml;
+
+ zplna(); /* convert s plane to z plane */
+ zplnb();
+ zplnc();
+ xfun(); /* tabulate transfer function */
+ goto top;
+
+ toosml:
+ printf( "Cannot continue, storage arrays too small\n" );
+ goto top;
}
int lampln()
{
-
-wc = 1.0;
-k = wc/wr;
-m = k * k;
-Kk = ellpk( 1.0 - m );
-Kpk = ellpk( m );
-q = exp( -PI * rn * Kpk / Kk ); /* the nome of k1 */
-m1 = cay(q); /* see below */
-/* Note m1 = eps / sqrt( A*A - 1.0 ) */
-a = eps/m1;
-a = a * a + 1;
-a = 10.0 * log(a) / log(10.0);
-printf( "dbdown %.9E\n", a );
-a = 180.0 * asin( k ) / PI;
-b = 1.0/(1.0 + eps*eps);
-b = sqrt( 1.0 - b );
-printf( "theta %.9E, rho %.9E\n", a, b );
-m1 *= m1;
-m1p = 1.0 - m1;
-Kk1 = ellpk( m1p );
-Kpk1 = ellpk( m1 );
-r = Kpk1 * Kk / (Kk1 * Kpk);
-printf( "consistency check: n= %.14E\n", r );
-/* -1
- * sn j/eps\m = j ellik( atan(1/eps), m )
- */
-b = 1.0/eps;
-phi = atan( b );
-u = ellik( phi, m1p );
-printf( "phi %.7e m %.7e u %.7e\n", phi, m1p, u );
-/* consistency check on inverse sn */
-ellpj( u, m1p, &sn, &cn, &dn, &phi );
-a = sn/cn;
-printf( "consistency check: sn/cn = %.9E = %.9E = 1/eps\n", a, b );
-u = u * Kk / (rn * Kk1); /* or, u = u * Kpk / Kpk1 */
-return 0;
+
+ wc = 1.0;
+ k = wc/wr;
+ m = k * k;
+ Kk = ellpk( 1.0 - m );
+ Kpk = ellpk( m );
+ q = exp( -PI * rn * Kpk / Kk ); /* the nome of k1 */
+ m1 = cay(q); /* see below */
+ /* Note m1 = eps / sqrt( A*A - 1.0 ) */
+ a = eps/m1;
+ a = a * a + 1;
+ a = 10.0 * log(a) / log(10.0);
+ printf( "dbdown %.9E\n", a );
+ a = 180.0 * asin( k ) / PI;
+ b = 1.0/(1.0 + eps*eps);
+ b = sqrt( 1.0 - b );
+ printf( "theta %.9E, rho %.9E\n", a, b );
+ m1 *= m1;
+ m1p = 1.0 - m1;
+ Kk1 = ellpk( m1p );
+ Kpk1 = ellpk( m1 );
+ r = Kpk1 * Kk / (Kk1 * Kpk);
+ printf( "consistency check: n= %.14E\n", r );
+ /* -1
+ * sn j/eps\m = j ellik( atan(1/eps), m )
+ */
+ b = 1.0/eps;
+ phi = atan( b );
+ u = ellik( phi, m1p );
+ printf( "phi %.7e m %.7e u %.7e\n", phi, m1p, u );
+ /* consistency check on inverse sn */
+ ellpj( u, m1p, &sn, &cn, &dn, &phi );
+ a = sn/cn;
+ printf( "consistency check: sn/cn = %.9E = %.9E = 1/eps\n", a, b );
+ u = u * Kk / (rn * Kk1); /* or, u = u * Kpk / Kpk1 */
+ return 0;
}
@@ -2336,172 +1963,172 @@
/* calculate s plane poles and zeros, normalized to wc = 1 */
int spln()
{
-for( i=0; i<ARRSIZ; i++ )
- zs[i] = 0.0;
-np = (n+1)/2;
-nz = 0;
-if( kind == 1 )
- {
-/* Butterworth poles equally spaced around the unit circle
- */
- if( n & 1 )
- m = 0.0;
- else
- m = PI / (2.0*n);
- for( i=0; i<np; i++ )
- { /* poles */
- lr = i + i;
- zs[lr] = -cos(m);
- zs[lr+1] = sin(m);
- m += PI / n;
- }
- /* high pass or band reject
- */
- if( type >= 3 )
- {
- /* map s => 1/s
- */
- for( j=0; j<np; j++ )
- {
- ir = j + j;
- ii = ir + 1;
- b = zs[ir]*zs[ir] + zs[ii]*zs[ii];
- zs[ir] = zs[ir] / b;
- zs[ii] = zs[ii] / b;
- }
- /* The zeros at infinity map to the origin.
- */
- nz = np;
- if( type == 4 )
- {
- nz += n/2;
- }
- for( j=0; j<nz; j++ )
- {
- ir = ii + 1;
- ii = ir + 1;
- zs[ir] = 0.0;
- zs[ii] = 0.0;
- }
- }
- }
-if( kind == 2 )
- {
- /* For Chebyshev, find radii of two Butterworth circles
- * See Gold & Rader, page 60
- */
- rho = (phi - 1.0)*(phi+1); /* rho = eps^2 = {sqrt(1+eps^2)}^2 - 1 */
- eps = sqrt(rho);
- /* sqrt( 1 + 1/eps^2 ) + 1/eps = {sqrt(1 + eps^2) + 1} / eps
- */
- phi = (phi + 1.0) / eps;
- phi = pow( phi, 1.0/rn ); /* raise to the 1/n power */
- b = 0.5 * (phi + 1.0/phi); /* y coordinates are on this circle */
- a = 0.5 * (phi - 1.0/phi); /* x coordinates are on this circle */
- if( n & 1 )
- m = 0.0;
- else
- m = PI / (2.0*n);
- for( i=0; i<np; i++ )
- { /* poles */
- lr = i + i;
- zs[lr] = -a * cos(m);
- zs[lr+1] = b * sin(m);
- m += PI / n;
- }
- /* high pass or band reject
- */
- if( type >= 3 )
- {
- /* map s => 1/s
- */
- for( j=0; j<np; j++ )
- {
- ir = j + j;
- ii = ir + 1;
- b = zs[ir]*zs[ir] + zs[ii]*zs[ii];
- zs[ir] = zs[ir] / b;
- zs[ii] = zs[ii] / b;
- }
- /* The zeros at infinity map to the origin.
- */
- nz = np;
- if( type == 4 )
- {
- nz += n/2;
- }
- for( j=0; j<nz; j++ )
- {
- ir = ii + 1;
- ii = ir + 1;
- zs[ir] = 0.0;
- zs[ii] = 0.0;
- }
- }
- }
-if( kind == 3 )
- {
- nz = n/2;
- ellpj( u, 1.0-m, &sn1, &cn1, &dn1, &phi1 );
- for( i=0; i<ARRSIZ; i++ )
- zs[i] = 0.0;
- for( i=0; i<nz; i++ )
- { /* zeros */
- a = n - 1 - i - i;
- b = (Kk * a) / rn;
- ellpj( b, m, &sn, &cn, &dn, &phi );
- lr = 2*np + 2*i;
- zs[ lr ] = 0.0;
- a = wc/(k*sn); /* k = sqrt(m) */
- zs[ lr + 1 ] = a;
- }
- for( i=0; i<np; i++ )
- { /* poles */
- a = n - 1 - i - i;
- b = a * Kk / rn;
- ellpj( b, m, &sn, &cn, &dn, &phi );
- r = k * sn * sn1;
- b = cn1*cn1 + r*r;
- a = -wc*cn*dn*sn1*cn1/b;
- lr = i + i;
- zs[lr] = a;
- b = wc*sn*dn1/b;
- zs[lr+1] = b;
- }
- if( type >= 3 )
- {
- nt = np + nz;
- for( j=0; j<nt; j++ )
- {
- ir = j + j;
- ii = ir + 1;
- b = zs[ir]*zs[ir] + zs[ii]*zs[ii];
- zs[ir] = zs[ir] / b;
- zs[ii] = zs[ii] / b;
- }
- while( np > nz )
- {
- ir = ii + 1;
- ii = ir + 1;
- nz += 1;
- zs[ir] = 0.0;
- zs[ii] = 0.0;
- }
- }
- }
-printf( "s plane poles:\n" );
-j = 0;
-for( i=0; i<np+nz; i++ )
- {
- a = zs[j];
- ++j;
- b = zs[j];
- ++j;
- printf( "%.9E %.9E\n", a, b );
- if( i == np-1 )
- printf( "s plane zeros:\n" );
- }
-return 0;
+ for( i=0; i<ARRSIZ; i++ )
+ zs[i] = 0.0;
+ np = (n+1)/2;
+ nz = 0;
+ if( kind == 1 )
+ {
+ /* Butterworth poles equally spaced around the unit circle
+ */
+ if( n & 1 )
+ m = 0.0;
+ else
+ m = PI / (2.0*n);
+ for( i=0; i<np; i++ )
+ { /* poles */
+ lr = i + i;
+ zs[lr] = -cos(m);
+ zs[lr+1] = sin(m);
+ m += PI / n;
+ }
+ /* high pass or band reject
+ */
+ if( type >= 3 )
+ {
+ /* map s => 1/s
+ */
+ for( j=0; j<np; j++ )
+ {
+ ir = j + j;
+ ii = ir + 1;
+ b = zs[ir]*zs[ir] + zs[ii]*zs[ii];
+ zs[ir] = zs[ir] / b;
+ zs[ii] = zs[ii] / b;
+ }
+ /* The zeros at infinity map to the origin.
+ */
+ nz = np;
+ if( type == 4 )
+ {
+ nz += n/2;
+ }
+ for( j=0; j<nz; j++ )
+ {
+ ir = ii + 1;
+ ii = ir + 1;
+ zs[ir] = 0.0;
+ zs[ii] = 0.0;
+ }
+ }
+ }
+ if( kind == 2 )
+ {
+ /* For Chebyshev, find radii of two Butterworth circles
+ * See Gold & Rader, page 60
+ */
+ rho = (phi - 1.0)*(phi+1); /* rho = eps^2 = {sqrt(1+eps^2)}^2 - 1 */
+ eps = sqrt(rho);
+ /* sqrt( 1 + 1/eps^2 ) + 1/eps = {sqrt(1 + eps^2) + 1} / eps
+ */
+ phi = (phi + 1.0) / eps;
+ phi = pow( phi, 1.0/rn ); /* raise to the 1/n power */
+ b = 0.5 * (phi + 1.0/phi); /* y coordinates are on this circle */
+ a = 0.5 * (phi - 1.0/phi); /* x coordinates are on this circle */
+ if( n & 1 )
+ m = 0.0;
+ else
+ m = PI / (2.0*n);
+ for( i=0; i<np; i++ )
+ { /* poles */
+ lr = i + i;
+ zs[lr] = -a * cos(m);
+ zs[lr+1] = b * sin(m);
+ m += PI / n;
+ }
+ /* high pass or band reject
+ */
+ if( type >= 3 )
+ {
+ /* map s => 1/s
+ */
+ for( j=0; j<np; j++ )
+ {
+ ir = j + j;
+ ii = ir + 1;
+ b = zs[ir]*zs[ir] + zs[ii]*zs[ii];
+ zs[ir] = zs[ir] / b;
+ zs[ii] = zs[ii] / b;
+ }
+ /* The zeros at infinity map to the origin.
+ */
+ nz = np;
+ if( type == 4 )
+ {
+ nz += n/2;
+ }
+ for( j=0; j<nz; j++ )
+ {
+ ir = ii + 1;
+ ii = ir + 1;
+ zs[ir] = 0.0;
+ zs[ii] = 0.0;
+ }
+ }
+ }
+ if( kind == 3 )
+ {
+ nz = n/2;
+ ellpj( u, 1.0-m, &sn1, &cn1, &dn1, &phi1 );
+ for( i=0; i<ARRSIZ; i++ )
+ zs[i] = 0.0;
+ for( i=0; i<nz; i++ )
+ { /* zeros */
+ a = n - 1 - i - i;
+ b = (Kk * a) / rn;
+ ellpj( b, m, &sn, &cn, &dn, &phi );
+ lr = 2*np + 2*i;
+ zs[ lr ] = 0.0;
+ a = wc/(k*sn); /* k = sqrt(m) */
+ zs[ lr + 1 ] = a;
+ }
+ for( i=0; i<np; i++ )
+ { /* poles */
+ a = n - 1 - i - i;
+ b = a * Kk / rn;
+ ellpj( b, m, &sn, &cn, &dn, &phi );
+ r = k * sn * sn1;
+ b = cn1*cn1 + r*r;
+ a = -wc*cn*dn*sn1*cn1/b;
+ lr = i + i;
+ zs[lr] = a;
+ b = wc*sn*dn1/b;
+ zs[lr+1] = b;
+ }
+ if( type >= 3 )
+ {
+ nt = np + nz;
+ for( j=0; j<nt; j++ )
+ {
+ ir = j + j;
+ ii = ir + 1;
+ b = zs[ir]*zs[ir] + zs[ii]*zs[ii];
+ zs[ir] = zs[ir] / b;
+ zs[ii] = zs[ii] / b;
+ }
+ while( np > nz )
+ {
+ ir = ii + 1;
+ ii = ir + 1;
+ nz += 1;
+ zs[ir] = 0.0;
+ zs[ii] = 0.0;
+ }
+ }
+ }
+ printf( "s plane poles:\n" );
+ j = 0;
+ for( i=0; i<np+nz; i++ )
+ {
+ a = zs[j];
+ ++j;
+ b = zs[j];
+ ++j;
+ printf( "%.9E %.9E\n", a, b );
+ if( i == np-1 )
+ printf( "s plane zeros:\n" );
+ }
+ return 0;
}
@@ -2532,39 +2159,39 @@
* Given q, this program returns m .
*/
double cay(q)
-double q;
+ double q;
{
-double a, b, p, r;
-double t1, t2;
-
-a = 1.0;
-b = 1.0;
-r = 1.0;
-p = q;
-
-do
-{
-r *= p;
-a += 2.0 * r;
-t1 = fabs( r/a );
-
-r *= p;
-b += r;
-p *= q;
-t2 = fabs( r/b );
-if( t2 > t1 )
+ double a, b, p, r;
+ double t1, t2;
+
+ a = 1.0;
+ b = 1.0;
+ r = 1.0;
+ p = q;
+
+ do
+ {
+ r *= p;
+ a += 2.0 * r;
+ t1 = fabs( r/a );
+
+ r *= p;
+ b += r;
+ p *= q;
+ t2 = fabs( r/b );
+ if( t2 > t1 )
t1 = t2;
+ }
+ while( t1 > MACHEP );
+
+ a = b/a;
+ a = 4.0 * sqrt(q) * a * a; /* see above formulas, solved for m */
+ return(a);
}
-while( t1 > MACHEP );
-a = b/a;
-a = 4.0 * sqrt(q) * a * a; /* see above formulas, solved for m */
-return(a);
-}
-
/* zpln.c
* Program to convert s plane poles and zeros to the z plane.
*/
@@ -2573,136 +2200,136 @@
int zplna()
{
-cmplx r, cnum, cden, cwc, ca, cb, b4ac;
-double C;
-
-if( kind == 3 )
- C = c;
-else
- C = wc;
-
-for( i=0; i<ARRSIZ; i++ )
+ cmplx r, cnum, cden, cwc, ca, cb, b4ac;
+ double C;
+
+ if( kind == 3 )
+ C = c;
+ else
+ C = wc;
+
+ for( i=0; i<ARRSIZ; i++ )
+ {
+ z[i].r = 0.0;
+ z[i].i = 0.0;
+ }
+
+ nc = np;
+ jt = -1;
+ ii = -1;
+
+ for( icnt=0; icnt<2; icnt++ )
+ {
+ /* The maps from s plane to z plane */
+ do
{
- z[i].r = 0.0;
- z[i].i = 0.0;
+ ir = ii + 1;
+ ii = ir + 1;
+ r.r = zs[ir];
+ r.i = zs[ii];
+
+ switch( type )
+ {
+ case 1:
+ case 3:
+ /* Substitute s - r = s/wc - r = (1/wc)(z-1)/(z+1) - r
+ *
+ * 1 1 - r wc ( 1 + r wc )
+ * = --- -------- ( z - -------- )
+ * z+1 wc ( 1 - r wc )
+ *
+ * giving the root in the z plane.
+ */
+ cnum.r = 1 + C * r.r;
+ cnum.i = C * r.i;
+ cden.r = 1 - C * r.r;
+ cden.i = -C * r.i;
+ jt += 1;
+ cdiv( &cden, &cnum, &z[jt] );
+ if( r.i != 0.0 )
+ {
+ /* fill in complex conjugate root */
+ jt += 1;
+ z[jt].r = z[jt-1 ].r;
+ z[jt].i = -z[jt-1 ].i;
+ }
+ break;
+
+ case 2:
+ case 4:
+ /* Substitute s - r => s/wc - r
+ *
+ * z^2 - 2 z cgam + 1
+ * => ------------------ - r
+ * (z^2 + 1) wc
+ *
+ * 1
+ * = ------------ [ (1 - r wc) z^2 - 2 cgam z + 1 + r wc ]
+ * (z^2 + 1) wc
+ *
+ * and solve for the roots in the z plane.
+ */
+ if( kind == 2 )
+ cwc.r = cbp;
+ else
+ cwc.r = c;
+ cwc.i = 0.0;
+ cmul( &r, &cwc, &cnum ); /* r wc */
+ csub( &cnum, &cone, &ca ); /* a = 1 - r wc */
+ cmul( &cnum, &cnum, &b4ac ); /* 1 - (r wc)^2 */
+ csub( &b4ac, &cone, &b4ac );
+ b4ac.r *= 4.0; /* 4ac */
+ b4ac.i *= 4.0;
+ cb.r = -2.0 * cgam; /* b */
+ cb.i = 0.0;
+ cmul( &cb, &cb, &cnum ); /* b^2 */
+ csub( &b4ac, &cnum, &b4ac ); /* b^2 - 4 ac */
+ csqrt( &b4ac, &b4ac );
+ cb.r = -cb.r; /* -b */
+ cb.i = -cb.i;
+ ca.r *= 2.0; /* 2a */
+ ca.i *= 2.0;
+ cadd( &b4ac, &cb, &cnum ); /* -b + sqrt( b^2 - 4ac) */
+ cdiv( &ca, &cnum, &cnum ); /* ... /2a */
+ jt += 1;
+ cmov( &cnum, &z[jt] );
+ if( cnum.i != 0.0 )
+ {
+ jt += 1;
+ z[jt].r = cnum.r;
+ z[jt].i = -cnum.i;
+ }
+ if( (r.i != 0.0) || (cnum.i == 0) )
+ {
+ csub( &b4ac, &cb, &cnum ); /* -b - sqrt( b^2 - 4ac) */
+ cdiv( &ca, &cnum, &cnum ); /* ... /2a */
+ jt += 1;
+ cmov( &cnum, &z[jt] );
+ if( cnum.i != 0.0 )
+ {
+ jt += 1;
+ z[jt].r = cnum.r;
+ z[jt].i = -cnum.i;
+ }
+ }
+ } /* end switch */
}
-
-nc = np;
-jt = -1;
-ii = -1;
-
-for( icnt=0; icnt<2; icnt++ )
-{
- /* The maps from s plane to z plane */
-do
+ while( --nc > 0 );
+
+ if( icnt == 0 )
{
- ir = ii + 1;
- ii = ir + 1;
- r.r = zs[ir];
- r.i = zs[ii];
-
- switch( type )
- {
- case 1:
- case 3:
-/* Substitute s - r = s/wc - r = (1/wc)(z-1)/(z+1) - r
- *
- * 1 1 - r wc ( 1 + r wc )
- * = --- -------- ( z - -------- )
- * z+1 wc ( 1 - r wc )
- *
- * giving the root in the z plane.
- */
- cnum.r = 1 + C * r.r;
- cnum.i = C * r.i;
- cden.r = 1 - C * r.r;
- cden.i = -C * r.i;
- jt += 1;
- cdiv( &cden, &cnum, &z[jt] );
- if( r.i != 0.0 )
- {
- /* fill in complex conjugate root */
- jt += 1;
- z[jt].r = z[jt-1 ].r;
- z[jt].i = -z[jt-1 ].i;
- }
- break;
-
- case 2:
- case 4:
-/* Substitute s - r => s/wc - r
- *
- * z^2 - 2 z cgam + 1
- * => ------------------ - r
- * (z^2 + 1) wc
- *
- * 1
- * = ------------ [ (1 - r wc) z^2 - 2 cgam z + 1 + r wc ]
- * (z^2 + 1) wc
- *
- * and solve for the roots in the z plane.
- */
- if( kind == 2 )
- cwc.r = cbp;
- else
- cwc.r = c;
- cwc.i = 0.0;
- cmul( &r, &cwc, &cnum ); /* r wc */
- csub( &cnum, &cone, &ca ); /* a = 1 - r wc */
- cmul( &cnum, &cnum, &b4ac ); /* 1 - (r wc)^2 */
- csub( &b4ac, &cone, &b4ac );
- b4ac.r *= 4.0; /* 4ac */
- b4ac.i *= 4.0;
- cb.r = -2.0 * cgam; /* b */
- cb.i = 0.0;
- cmul( &cb, &cb, &cnum ); /* b^2 */
- csub( &b4ac, &cnum, &b4ac ); /* b^2 - 4 ac */
- csqrt( &b4ac, &b4ac );
- cb.r = -cb.r; /* -b */
- cb.i = -cb.i;
- ca.r *= 2.0; /* 2a */
- ca.i *= 2.0;
- cadd( &b4ac, &cb, &cnum ); /* -b + sqrt( b^2 - 4ac) */
- cdiv( &ca, &cnum, &cnum ); /* ... /2a */
- jt += 1;
- cmov( &cnum, &z[jt] );
- if( cnum.i != 0.0 )
- {
- jt += 1;
- z[jt].r = cnum.r;
- z[jt].i = -cnum.i;
- }
- if( (r.i != 0.0) || (cnum.i == 0) )
- {
- csub( &b4ac, &cb, &cnum ); /* -b - sqrt( b^2 - 4ac) */
- cdiv( &ca, &cnum, &cnum ); /* ... /2a */
- jt += 1;
- cmov( &cnum, &z[jt] );
- if( cnum.i != 0.0 )
- {
- jt += 1;
- z[jt].r = cnum.r;
- z[jt].i = -cnum.i;
- }
- }
- } /* end switch */
+ zord = jt+1;
+ if( nz <= 0 )
+ {
+ if( kind != 3 )
+ return(0);
+ else
+ break;
+ }
}
- while( --nc > 0 );
-
-if( icnt == 0 )
- {
- zord = jt+1;
- if( nz <= 0 )
- {
- if( kind != 3 )
- return(0);
- else
- break;
- }
- }
-nc = nz;
-} /* end for() loop */
-return 0;
+ nc = nz;
+ } /* end for() loop */
+ return 0;
}
@@ -2710,122 +2337,122 @@
int zplnb()
{
-cmplx lin[2];
-
-lin[1].r = 1.0;
-lin[1].i = 0.0;
-
-if( kind != 3 )
- { /* Butterworth or Chebyshev */
-/* generate the remaining zeros */
- while( 2*zord - 1 > jt )
- {
- if( type != 3 )
- {
- printf( "adding zero at Nyquist frequency\n" );
- jt += 1;
- z[jt].r = -1.0; /* zero at Nyquist frequency */
- z[jt].i = 0.0;
- }
- if( (type == 2) || (type == 3) )
- {
- printf( "adding zero at 0 Hz\n" );
- jt += 1;
- z[jt].r = 1.0; /* zero at 0 Hz */
- z[jt].i = 0.0;
- }
- }
- }
-else
- { /* elliptic */
- while( 2*zord - 1 > jt )
- {
- jt += 1;
- z[jt].r = -1.0; /* zero at Nyquist frequency */
- z[jt].i = 0.0;
- if( (type == 2) || (type == 4) )
- {
- jt += 1;
- z[jt].r = 1.0; /* zero at 0 Hz */
- z[jt].i = 0.0;
- }
- }
- }
-printf( "order = %d\n", zord );
-
-/* Expand the poles and zeros into numerator and
- * denominator polynomials
- */
-for( icnt=0; icnt<2; icnt++ )
- {
- for( j=0; j<ARRSIZ; j++ )
- {
- pp[j] = 0.0;
- y[j] = 0.0;
- }
- pp[0] = 1.0;
- for( j=0; j<zord; j++ )
- {
- jj = j;
- if( icnt )
- jj += zord;
- a = z[jj].r;
- b = z[jj].i;
- for( i=0; i<=j; i++ )
- {
- jh = j - i;
- pp[jh+1] = pp[jh+1] - a * pp[jh] + b * y[jh];
- y[jh+1] = y[jh+1] - b * pp[jh] - a * y[jh];
- }
- }
- if( icnt == 0 )
- {
- for( j=0; j<=zord; j++ )
- aa[j] = pp[j];
- }
- }
-/* Scale factors of the pole and zero polynomials */
-a = 1.0;
-switch( type )
- {
- case 3:
- a = -1.0;
-
- case 1:
- case 4:
-
- pn = 1.0;
- an = 1.0;
- for( j=1; j<=zord; j++ )
- {
- pn = a * pn + pp[j];
- an = a * an + aa[j];
- }
- break;
-
- case 2:
- gam = PI/2.0 - asin( cgam ); /* = acos( cgam ) */
- mh = zord/2;
- pn = pp[mh];
- an = aa[mh];
- ai = 0.0;
- if( mh > ((zord/4)*2) )
- {
- ai = 1.0;
- pn = 0.0;
- an = 0.0;
- }
- for( j=1; j<=mh; j++ )
- {
- a = gam * j - ai * PI / 2.0;
- cng = cos(a);
- jh = mh + j;
- jl = mh - j;
- pn = pn + cng * (pp[jh] + (1.0 - 2.0 * ai) * pp[jl]);
- an = an + cng * (aa[jh] + (1.0 - 2.0 * ai) * aa[jl]);
- }
- }
-return 0;
+ cmplx lin[2];
+
+ lin[1].r = 1.0;
+ lin[1].i = 0.0;
+
+ if( kind != 3 )
+ { /* Butterworth or Chebyshev */
+ /* generate the remaining zeros */
+ while( 2*zord - 1 > jt )
+ {
+ if( type != 3 )
+ {
+ printf( "adding zero at Nyquist frequency\n" );
+ jt += 1;
+ z[jt].r = -1.0; /* zero at Nyquist frequency */
+ z[jt].i = 0.0;
+ }
+ if( (type == 2) || (type == 3) )
+ {
+ printf( "adding zero at 0 Hz\n" );
+ jt += 1;
+ z[jt].r = 1.0; /* zero at 0 Hz */
+ z[jt].i = 0.0;
+ }
+ }
+ }
+ else
+ { /* elliptic */
+ while( 2*zord - 1 > jt )
+ {
+ jt += 1;
+ z[jt].r = -1.0; /* zero at Nyquist frequency */
+ z[jt].i = 0.0;
+ if( (type == 2) || (type == 4) )
+ {
+ jt += 1;
+ z[jt].r = 1.0; /* zero at 0 Hz */
+ z[jt].i = 0.0;
+ }
+ }
+ }
+ printf( "order = %d\n", zord );
+
+ /* Expand the poles and zeros into numerator and
+ * denominator polynomials
+ */
+ for( icnt=0; icnt<2; icnt++ )
+ {
+ for( j=0; j<ARRSIZ; j++ )
+ {
+ pp[j] = 0.0;
+ y[j] = 0.0;
+ }
+ pp[0] = 1.0;
+ for( j=0; j<zord; j++ )
+ {
+ jj = j;
+ if( icnt )
+ jj += zord;
+ a = z[jj].r;
+ b = z[jj].i;
+ for( i=0; i<=j; i++ )
+ {
+ jh = j - i;
+ pp[jh+1] = pp[jh+1] - a * pp[jh] + b * y[jh];
+ y[jh+1] = y[jh+1] - b * pp[jh] - a * y[jh];
+ }
+ }
+ if( icnt == 0 )
+ {
+ for( j=0; j<=zord; j++ )
+ aa[j] = pp[j];
+ }
+ }
+ /* Scale factors of the pole and zero polynomials */
+ a = 1.0;
+ switch( type )
+ {
+ case 3:
+ a = -1.0;
+
+ case 1:
+ case 4:
+
+ pn = 1.0;
+ an = 1.0;
+ for( j=1; j<=zord; j++ )
+ {
+ pn = a * pn + pp[j];
+ an = a * an + aa[j];
+ }
+ break;
+
+ case 2:
+ gam = PI/2.0 - asin( cgam ); /* = acos( cgam ) */
+ mh = zord/2;
+ pn = pp[mh];
+ an = aa[mh];
+ ai = 0.0;
+ if( mh > ((zord/4)*2) )
+ {
+ ai = 1.0;
+ pn = 0.0;
+ an = 0.0;
+ }
+ for( j=1; j<=mh; j++ )
+ {
+ a = gam * j - ai * PI / 2.0;
+ cng = cos(a);
+ jh = mh + j;
+ jl = mh - j;
+ pn = pn + cng * (pp[jh] + (1.0 - 2.0 * ai) * pp[jl]);
+ an = an + cng * (aa[jh] + (1.0 - 2.0 * ai) * aa[jl]);
+ }
+ }
+ return 0;
}
@@ -2833,39 +2460,39 @@
int zplnc()
{
-
-gain = an/(pn*scale);
-if( (kind != 3) && (pn == 0) )
- gain = 1.0;
-printf( "constant gain factor %23.13E\n", gain );
-for( j=0; j<=zord; j++ )
- pp[j] = gain * pp[j];
-
-printf( "z plane Denominator Numerator\n" );
-for( j=0; j<=zord; j++ )
- {
- printf( "%2d %17.9E %17.9E\n", j, aa[j], pp[j] );
- }
-printf( "poles and zeros with corresponding quadratic factors\n" );
-for( j=0; j<zord; j++ )
- {
- a = z[j].r;
- b = z[j].i;
- if( b >= 0.0 )
- {
- printf( "pole %23.13E %23.13E\n", a, b );
- quadf( a, b, 1 );
- }
- jj = j + zord;
- a = z[jj].r;
- b = z[jj].i;
- if( b >= 0.0 )
- {
- printf( "zero %23.13E %23.13E\n", a, b );
- quadf( a, b, 0 );
- }
- }
-return 0;
+
+ gain = an/(pn*scale);
+ if( (kind != 3) && (pn == 0) )
+ gain = 1.0;
+ printf( "constant gain factor %23.13E\n", gain );
+ for( j=0; j<=zord; j++ )
+ pp[j] = gain * pp[j];
+
+ printf( "z plane Denominator Numerator\n" );
+ for( j=0; j<=zord; j++ )
+ {
+ printf( "%2d %17.9E %17.9E\n", j, aa[j], pp[j] );
+ }
+ printf( "poles and zeros with corresponding quadratic factors\n" );
+ for( j=0; j<zord; j++ )
+ {
+ a = z[j].r;
+ b = z[j].i;
+ if( b >= 0.0 )
+ {
+ printf( "pole %23.13E %23.13E\n", a, b );
+ quadf( a, b, 1 );
+ }
+ jj = j + zord;
+ a = z[jj].r;
+ b = z[jj].i;
+ if( b >= 0.0 )
+ {
+ printf( "zero %23.13E %23.13E\n", a, b );
+ quadf( a, b, 0 );
+ }
+ }
+ return 0;
}
@@ -2874,57 +2501,57 @@
/* display quadratic factors
*/
int quadf( x, y, pzflg )
-double x, y;
-int pzflg; /* 1 if poles, 0 if zeros */
+ double x, y;
+ int pzflg; /* 1 if poles, 0 if zeros */
{
-double a, b, r, f, g, g0;
-
-if( y > 1.0e-16 )
- {
- a = -2.0 * x;
- b = x*x + y*y;
- }
-else
- {
- a = -x;
- b = 0.0;
- }
-printf( "q. f.\nz**2 %23.13E\nz**1 %23.13E\n", b, a );
-if( b != 0.0 )
- {
-/* resonant frequency */
- r = sqrt(b);
- f = PI/2.0 - asin( -a/(2.0*r) );
- f = f * fs / (2.0 * PI );
-/* gain at resonance */
- g = 1.0 + r;
- g = g*g - (a*a/r);
- g = (1.0 - r) * sqrt(g);
- g0 = 1.0 + a + b; /* gain at d.c. */
- }
-else
- {
-/* It is really a first-order network.
- * Give the gain at fnyq and D.C.
- */
- f = fnyq;
- g = 1.0 - a;
- g0 = 1.0 + a;
- }
-
-if( pzflg )
- {
- if( g != 0.0 )
- g = 1.0/g;
- else
- g = MAXNUM;
- if( g0 != 0.0 )
- g0 = 1.0/g0;
- else
- g = MAXNUM;
- }
-printf( "f0 %16.8E gain %12.4E DC gain %12.4E\n\n", f, g, g0 );
-return 0;
+ double a, b, r, f, g, g0;
+
+ if( y > 1.0e-16 )
+ {
+ a = -2.0 * x;
+ b = x*x + y*y;
+ }
+ else
+ {
+ a = -x;
+ b = 0.0;
+ }
+ printf( "q. f.\nz**2 %23.13E\nz**1 %23.13E\n", b, a );
+ if( b != 0.0 )
+ {
+ /* resonant frequency */
+ r = sqrt(b);
+ f = PI/2.0 - asin( -a/(2.0*r) );
+ f = f * fs / (2.0 * PI );
+ /* gain at resonance */
+ g = 1.0 + r;
+ g = g*g - (a*a/r);
+ g = (1.0 - r) * sqrt(g);
+ g0 = 1.0 + a + b; /* gain at d.c. */
+ }
+ else
+ {
+ /* It is really a first-order network.
+ * Give the gain at fnyq and D.C.
+ */
+ f = fnyq;
+ g = 1.0 - a;
+ g0 = 1.0 + a;
+ }
+
+ if( pzflg )
+ {
+ if( g != 0.0 )
+ g = 1.0/g;
+ else
+ g = MAXNUM;
+ if( g0 != 0.0 )
+ g0 = 1.0/g0;
+ else
+ g = MAXNUM;
+ }
+ printf( "f0 %16.8E gain %12.4E DC gain %12.4E\n\n", f, g, g0 );
+ return 0;
}
@@ -2933,22 +2560,22 @@
*/
int xfun()
{
-double f, r;
-int i;
-
-f = 0.0;
-
-for( i=0; i<=20; i++ )
- {
- r = response( f, gain );
- if( r <= 0.0 )
- r = -999.99;
- else
- r = 2.0 * dbfac * log( r );
- printf( "%10.1f %10.2f\n", f, r );
- f = f + 0.05 * fnyq;
- }
-return 0;
+ double f, r;
+ int i;
+
+ f = 0.0;
+
+ for( i=0; i<=20; i++ )
+ {
+ r = response( f, gain );
+ if( r <= 0.0 )
+ r = -999.99;
+ else
+ r = 2.0 * dbfac * log( r );
+ printf( "%10.1f %10.2f\n", f, r );
+ f = f + 0.05 * fnyq;
+ }
+ return 0;
}
@@ -2956,33 +2583,33 @@
* mulitplied by amp
*/
double response( f, amp )
-double f, amp;
+ double f, amp;
{
-cmplx x, num, den, w;
-double u;
-int j;
-
-/* exp( j omega T ) */
-u = 2.0 * PI * f /fs;
-x.r = cos(u);
-x.i = sin(u);
-
-num.r = 1.0;
-num.i = 0.0;
-den.r = 1.0;
-den.i = 0.0;
-for( j=0; j<zord; j++ )
- {
- csub( &z[j], &x, &w );
- cmul( &w, &den, &den );
- csub( &z[j+zord], &x, &w );
- cmul( &w, &num, &num );
- }
-cdiv( &den, &num, &w );
-w.r *= amp;
-w.i *= amp;
-u = cabs( &w );
-return(u);
+ cmplx x, num, den, w;
+ double u;
+ int j;
+
+ /* exp( j omega T ) */
+ u = 2.0 * PI * f /fs;
+ x.r = cos(u);
+ x.i = sin(u);
+
+ num.r = 1.0;
+ num.i = 0.0;
+ den.r = 1.0;
+ den.i = 0.0;
+ for( j=0; j<zord; j++ )
+ {
+ csub( &z[j], &x, &w );
+ cmul( &w, &den, &den );
+ csub( &z[j+zord], &x, &w );
+ cmul( &w, &num, &num );
+ }
+ cdiv( &den, &num, &w );
+ w.r *= amp;
+ w.i *= amp;
+ u = cabs( &w );
+ return(u);
}
@@ -2992,19 +2619,19 @@
* Display previous value and keep it if user just hits <CR>.
*/
int getnum( line, val )
-char *line;
-double *val;
+ char *line;
+ double *val;
{
-char s[40];
-
-printf( "%s = %.9E ? ", line, *val );
-gets( s );
-if( s[0] != '\0' )
- {
- sscanf( s, "%lf", val );
- printf( "%.9E\n", *val );
- }
-return 0;
+ char s[40];
+
+ printf( "%s = %.9E ? ", line, *val );
+ gets( s );
+ if( s[0] != '\0' )
+ {
+ sscanf( s, "%lf", val );
+ printf( "%.9E\n", *val );
+ }
+ return 0;
}
/* === ellf.c - end === */
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]