[cogl/wip/rib/master-next: 3/11] matrix: Flatten cogl-matrix-mesa.[ch] into cogl-matrix.[ch]



commit d4a450a113f4a6db3357c11682f7351e3fe61c99
Author: Robert Bragg <robert linux intel com>
Date:   Thu Jun 30 21:54:19 2011 +0100

    matrix: Flatten cogl-matrix-mesa.[ch] into cogl-matrix.[ch]
    
    It has been overly cumbersome to work with the matrix code ever since we
    pulled in the mesa code because we initially kept the mesa and the
    original cogl code separate. We have made several updates to the mesa
    code since integrating, and the coding style has changed a lot compared
    to the original mesa code, so there's little point in keeping the two
    files separate any longer.

 cogl/Makefile.am        |    2 -
 cogl/cogl-matrix-mesa.c | 1599 ----------------------------------------
 cogl/cogl-matrix-mesa.h |  153 ----
 cogl/cogl-matrix.c      | 1857 ++++++++++++++++++++++++++++++++++++++++------
 4 files changed, 1614 insertions(+), 1997 deletions(-)
---
diff --git a/cogl/Makefile.am b/cogl/Makefile.am
index 959d2dc..39c348c 100644
--- a/cogl/Makefile.am
+++ b/cogl/Makefile.am
@@ -290,8 +290,6 @@ cogl_sources_c = \
 	$(srcdir)/cogl-journal.c			\
 	$(srcdir)/cogl-framebuffer-private.h		\
 	$(srcdir)/cogl-framebuffer.c 			\
-	$(srcdir)/cogl-matrix-mesa.h 			\
-	$(srcdir)/cogl-matrix-mesa.c 			\
 	$(srcdir)/cogl-profile.h 			\
 	$(srcdir)/cogl-profile.c 			\
 	$(srcdir)/cogl-flags.h				\
diff --git a/cogl/cogl-matrix.c b/cogl/cogl-matrix.c
index 06c5fa1..51c98fb 100644
--- a/cogl/cogl-matrix.c
+++ b/cogl/cogl-matrix.c
@@ -3,7 +3,7 @@
  *
  * An object oriented GL/GLES Abstraction/Utility Layer
  *
- * Copyright (C) 2008,2009 Intel Corporation.
+ * Copyright (C) 2009,2010,2011 Intel Corporation.
  *
  * This library is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
@@ -18,102 +18,1312 @@
  * You should have received a copy of the GNU Lesser General Public
  * License along with this library. If not, see <http://www.gnu.org/licenses/>.
  *
- *
- *
  * Authors:
  *   Robert Bragg <robert linux intel com>
  */
+/*
+ * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/*
+ * Note: a lot of this code is based on code that was taken from Mesa.
+ *
+ * Changes compared to the original code from Mesa:
+ *
+ * - instead of allocating matrix->m and matrix->inv using malloc, our
+ *   public CoglMatrix typedef is large enough to directly contain the
+ *   matrix, its inverse, a type and a set of flags.
+ * - instead of having a _cogl_matrix_analyse which updates the type,
+ *   flags and inverse, we have _cogl_matrix_update_inverse which
+ *   essentially does the same thing (internally making use of
+ *   _cogl_matrix_update_type_and_flags()) but with additional guards in
+ *   place to bail out when the inverse matrix is still valid.
+ * - when initializing a matrix with the identity matrix we don't
+ *   immediately initialize the inverse matrix; rather we just set the
+ *   dirty flag for the inverse (since it's likely the user won't request
+ *   the inverse of the identity matrix)
+ */
 
 #ifdef HAVE_CONFIG_H
 #include "config.h"
 #endif
 
-#define USE_MESA_MATRIX_API
+#include <cogl.h>
+#include <cogl-debug.h>
+#include <cogl-quaternion.h>
+#include <cogl-quaternion-private.h>
+#include <cogl-matrix.h>
+#include <cogl-matrix-private.h>
+#include <cogl-quaternion-private.h>
+
+#include <glib.h>
+#include <math.h>
+#include <string.h>
+
+#ifdef _COGL_SUPPORTS_GTYPE_INTEGRATION
+#include <cogl-gtype-private.h>
+COGL_GTYPE_DEFINE_BOXED ("Matrix", matrix,
+                         cogl_matrix_copy,
+                         cogl_matrix_free);
+#endif
+
+/*
+ * Symbolic names to some of the entries in the matrix
+ *
+ * These are handy for the viewport mapping, which is expressed as a matrix.
+ */
+#define MAT_SX 0
+#define MAT_SY 5
+#define MAT_SZ 10
+#define MAT_TX 12
+#define MAT_TY 13
+#define MAT_TZ 14
+
+/*
+ * These identify different kinds of 4x4 transformation matrices and we use
+ * this information to find fast-paths when available.
+ */
+enum CoglMatrixType {
+   COGL_MATRIX_TYPE_GENERAL,	/**< general 4x4 matrix */
+   COGL_MATRIX_TYPE_IDENTITY,	/**< identity matrix */
+   COGL_MATRIX_TYPE_3D_NO_ROT,	/**< orthogonal projection and others... */
+   COGL_MATRIX_TYPE_PERSPECTIVE,	/**< perspective projection matrix */
+   COGL_MATRIX_TYPE_2D,		/**< 2-D transformation */
+   COGL_MATRIX_TYPE_2D_NO_ROT,	/**< 2-D scale & translate only */
+   COGL_MATRIX_TYPE_3D		/**< 3-D transformation */
+} ;
+
+#define DEG2RAD (G_PI/180.0)
+
+/* Dot product of two 2-element vectors */
+#define DOT2(A,B)  ( (A)[0]*(B)[0] + (A)[1]*(B)[1] )
+
+/* Dot product of two 3-element vectors */
+#define DOT3(A,B)  ( (A)[0]*(B)[0] + (A)[1]*(B)[1] + (A)[2]*(B)[2] )
+
+#define CROSS3(N, U, V) \
+do { \
+    (N)[0] = (U)[1]*(V)[2] - (U)[2]*(V)[1]; \
+    (N)[1] = (U)[2]*(V)[0] - (U)[0]*(V)[2]; \
+    (N)[2] = (U)[0]*(V)[1] - (U)[1]*(V)[0]; \
+} while (0)
+
+#define SUB_3V(DST, SRCA, SRCB) \
+do { \
+    (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
+    (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
+    (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
+} while (0)
+
+#define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
+
+/*
+ * \defgroup MatFlags MAT_FLAG_XXX-flags
+ *
+ * Bitmasks to indicate different kinds of 4x4 matrices in CoglMatrix::flags
+ */
+#define MAT_FLAG_IDENTITY       0     /*< is an identity matrix flag.
+                                       *   (Not actually used - the identity
+                                       *   matrix is identified by the absense
+                                       *   of all other flags.)
+                                       */
+#define MAT_FLAG_GENERAL        0x1   /*< is a general matrix flag */
+#define MAT_FLAG_ROTATION       0x2   /*< is a rotation matrix flag */
+#define MAT_FLAG_TRANSLATION    0x4   /*< is a translation matrix flag */
+#define MAT_FLAG_UNIFORM_SCALE  0x8   /*< is an uniform scaling matrix flag */
+#define MAT_FLAG_GENERAL_SCALE  0x10  /*< is a general scaling matrix flag */
+#define MAT_FLAG_GENERAL_3D     0x20  /*< general 3D matrix flag */
+#define MAT_FLAG_PERSPECTIVE    0x40  /*< is a perspective proj matrix flag */
+#define MAT_FLAG_SINGULAR       0x80  /*< is a singular matrix flag */
+#define MAT_DIRTY_TYPE          0x100  /*< matrix type is dirty */
+#define MAT_DIRTY_FLAGS         0x200  /*< matrix flags are dirty */
+#define MAT_DIRTY_INVERSE       0x400  /*< matrix inverse is dirty */
+
+/* angle preserving matrix flags mask */
+#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
+				    MAT_FLAG_TRANSLATION | \
+				    MAT_FLAG_UNIFORM_SCALE)
+
+/* geometry related matrix flags mask */
+#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
+			    MAT_FLAG_ROTATION | \
+			    MAT_FLAG_TRANSLATION | \
+			    MAT_FLAG_UNIFORM_SCALE | \
+			    MAT_FLAG_GENERAL_SCALE | \
+			    MAT_FLAG_GENERAL_3D | \
+			    MAT_FLAG_PERSPECTIVE | \
+	                    MAT_FLAG_SINGULAR)
+
+/* length preserving matrix flags mask */
+#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
+				     MAT_FLAG_TRANSLATION)
+
+
+/* 3D (non-perspective) matrix flags mask */
+#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
+		      MAT_FLAG_TRANSLATION | \
+		      MAT_FLAG_UNIFORM_SCALE | \
+		      MAT_FLAG_GENERAL_SCALE | \
+		      MAT_FLAG_GENERAL_3D)
+
+/* dirty matrix flags mask */
+#define MAT_DIRTY_ALL      (MAT_DIRTY_TYPE | \
+			    MAT_DIRTY_FLAGS | \
+			    MAT_DIRTY_INVERSE)
+
+
+/*
+ * Test geometry related matrix flags.
+ *
+ * @mat a pointer to a CoglMatrix structure.
+ * @a flags mask.
+ *
+ * Returns: non-zero if all geometry related matrix flags are contained within
+ * the mask, or zero otherwise.
+ */
+#define TEST_MAT_FLAGS(mat, a)  \
+    ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
+
+
+
+/*
+ * Names of the corresponding CoglMatrixType values.
+ */
+static const char *types[] = {
+   "COGL_MATRIX_TYPE_GENERAL",
+   "COGL_MATRIX_TYPE_IDENTITY",
+   "COGL_MATRIX_TYPE_3D_NO_ROT",
+   "COGL_MATRIX_TYPE_PERSPECTIVE",
+   "COGL_MATRIX_TYPE_2D",
+   "COGL_MATRIX_TYPE_2D_NO_ROT",
+   "COGL_MATRIX_TYPE_3D"
+};
+
+
+/*
+ * Identity matrix.
+ */
+static float identity[16] = {
+   1.0, 0.0, 0.0, 0.0,
+   0.0, 1.0, 0.0, 0.0,
+   0.0, 0.0, 1.0, 0.0,
+   0.0, 0.0, 0.0, 1.0
+};
+
+
+#define A(row,col)  a[(col<<2)+row]
+#define B(row,col)  b[(col<<2)+row]
+#define R(row,col)  result[(col<<2)+row]
+
+/*
+ * Perform a full 4x4 matrix multiplication.
+ *
+ * <note>It's assumed that @result != @b. @product == @a is allowed.</note>
+ *
+ * <note>KW: 4*16 = 64 multiplications</note>
+ */
+static void
+matrix_multiply4x4 (float *result, const float *a, const float *b)
+{
+  int i;
+  for (i = 0; i < 4; i++)
+    {
+      const float ai0 = A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
+      R(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
+      R(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
+      R(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
+      R(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
+    }
+}
+
+/*
+ * Multiply two matrices known to occupy only the top three rows, such
+ * as typical model matrices, and orthogonal matrices.
+ *
+ * @a matrix.
+ * @b matrix.
+ * @product will receive the product of \p a and \p b.
+ */
+static void
+matrix_multiply3x4 (float *result, const float *a, const float *b)
+{
+  int i;
+  for (i = 0; i < 3; i++)
+    {
+      const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3);
+      R(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
+      R(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
+      R(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
+      R(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
+    }
+  R(3,0) = 0;
+  R(3,1) = 0;
+  R(3,2) = 0;
+  R(3,3) = 1;
+}
+
+#undef A
+#undef B
+#undef R
+
+/*
+ * Multiply a matrix by an array of floats with known properties.
+ *
+ * @mat pointer to a CoglMatrix structure containing the left multiplication
+ * matrix, and that will receive the product result.
+ * @m right multiplication matrix array.
+ * @flags flags of the matrix \p m.
+ *
+ * Joins both flags and marks the type and inverse as dirty.  Calls
+ * matrix_multiply3x4() if both matrices are 3D, or matrix_multiply4x4()
+ * otherwise.
+ */
+static void
+matrix_multiply_array_with_flags (CoglMatrix *result,
+                                  const float *array,
+                                  unsigned int flags)
+{
+  result->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
+
+  if (TEST_MAT_FLAGS (result, MAT_FLAGS_3D))
+    matrix_multiply3x4 ((float *)result, (float *)result, array);
+  else
+    matrix_multiply4x4 ((float *)result, (float *)result, array);
+}
+
+/* Joins both flags and marks the type and inverse as dirty.  Calls
+ * matrix_multiply3x4() if both matrices are 3D, or matrix_multiply4x4()
+ * otherwise.
+ */
+static void
+_cogl_matrix_multiply (CoglMatrix *result,
+                       const CoglMatrix *a,
+                       const CoglMatrix *b)
+{
+  result->flags = (a->flags |
+                   b->flags |
+                   MAT_DIRTY_TYPE |
+                   MAT_DIRTY_INVERSE);
+
+  if (TEST_MAT_FLAGS(result, MAT_FLAGS_3D))
+    matrix_multiply3x4 ((float *)result, (float *)a, (float *)b);
+  else
+    matrix_multiply4x4 ((float *)result, (float *)a, (float *)b);
+}
+
+void
+cogl_matrix_multiply (CoglMatrix *result,
+		      const CoglMatrix *a,
+		      const CoglMatrix *b)
+{
+  _cogl_matrix_multiply (result, a, b);
+  _COGL_MATRIX_DEBUG_PRINT (result);
+}
+
+#if 0
+/* Marks the matrix flags with general flag, and type and inverse dirty flags.
+ * Calls matrix_multiply4x4() for the multiplication.
+ */
+static void
+_cogl_matrix_multiply_array (CoglMatrix *result, const float *array)
+{
+  result->flags |= (MAT_FLAG_GENERAL |
+                  MAT_DIRTY_TYPE |
+                  MAT_DIRTY_INVERSE |
+                  MAT_DIRTY_FLAGS);
+
+  matrix_multiply4x4 ((float *)result, (float *)result, (float *)array);
+}
+#endif
+
+/*
+ * Print a matrix array.
+ *
+ * Called by _cogl_matrix_print() to print a matrix or its inverse.
+ */
+static void
+print_matrix_floats (const float m[16])
+{
+  int i;
+  for (i = 0;i < 4; i++)
+    g_print ("\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
+}
+
+/*
+ * Dumps the contents of a CoglMatrix structure.
+ */
+void
+_cogl_matrix_print (const CoglMatrix *matrix)
+{
+  g_print ("Matrix type: %s, flags: %x\n",
+           types[matrix->type], (int)matrix->flags);
+  print_matrix_floats ((float *)matrix);
+  g_print ("Inverse: \n");
+  if (!(matrix->flags & MAT_DIRTY_INVERSE))
+    {
+      float prod[16];
+      print_matrix_floats (matrix->inv);
+      matrix_multiply4x4 (prod, (float *)matrix, matrix->inv);
+      g_print ("Mat * Inverse:\n");
+      print_matrix_floats (prod);
+    }
+  else
+    g_print ("  - not available\n");
+}
+
+/*
+ * References an element of 4x4 matrix.
+ *
+ * @m matrix array.
+ * @c column of the desired element.
+ * @r row of the desired element.
+ *
+ * Returns: value of the desired element.
+ *
+ * Calculate the linear storage index of the element and references it.
+ */
+#define MAT(m,r,c) (m)[(c)*4+(r)]
+
+/*
+ * Swaps the values of two floating pointer variables.
+ *
+ * Used by invert_matrix_general() to swap the row pointers.
+ */
+#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }
+
+/*
+ * Compute inverse of 4x4 transformation matrix.
+ *
+ * @mat pointer to a CoglMatrix structure. The matrix inverse will be
+ * stored in the CoglMatrix::inv attribute.
+ *
+ * Returns: %TRUE for success, %FALSE for failure (\p singular matrix).
+ *
+ * \author
+ * Code contributed by Jacques Leroy jle star be
+ *
+ * Calculates the inverse matrix by performing the gaussian matrix reduction
+ * with partial pivoting followed by back/substitution with the loops manually
+ * unrolled.
+ */
+static gboolean
+invert_matrix_general (CoglMatrix *matrix)
+{
+  const float *m = (float *)matrix;
+  float *out = matrix->inv;
+  float wtmp[4][8];
+  float m0, m1, m2, m3, s;
+  float *r0, *r1, *r2, *r3;
+
+  r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
+
+  r0[0] = MAT (m, 0, 0), r0[1] = MAT (m, 0, 1),
+    r0[2] = MAT (m, 0, 2), r0[3] = MAT (m, 0, 3),
+    r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
+
+    r1[0] = MAT (m, 1, 0), r1[1] = MAT (m, 1, 1),
+    r1[2] = MAT (m, 1, 2), r1[3] = MAT (m, 1, 3),
+    r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
+
+    r2[0] = MAT (m, 2, 0), r2[1] = MAT (m, 2, 1),
+    r2[2] = MAT (m, 2, 2), r2[3] = MAT (m, 2, 3),
+    r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
+
+    r3[0] = MAT (m, 3, 0), r3[1] = MAT (m, 3, 1),
+    r3[2] = MAT (m, 3, 2), r3[3] = MAT (m, 3, 3),
+    r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
+
+  /* choose pivot - or die */
+  if (fabsf (r3[0]) > fabsf (r2[0]))
+    SWAP_ROWS (r3, r2);
+  if (fabsf (r2[0]) > fabsf (r1[0]))
+    SWAP_ROWS (r2, r1);
+  if (fabsf (r1[0]) > fabsf (r0[0]))
+    SWAP_ROWS (r1, r0);
+  if (0.0 == r0[0])
+    return FALSE;
+
+  /* eliminate first variable     */
+  m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
+  s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
+  s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
+  s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
+  s = r0[4];
+  if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
+  s = r0[5];
+  if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
+  s = r0[6];
+  if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
+  s = r0[7];
+  if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
+
+  /* choose pivot - or die */
+  if (fabsf (r3[1]) > fabsf (r2[1]))
+    SWAP_ROWS (r3, r2);
+  if (fabsf (r2[1]) > fabsf (r1[1]))
+    SWAP_ROWS (r2, r1);
+  if (0.0 == r1[1])
+    return FALSE;
+
+  /* eliminate second variable */
+  m2 = r2[1] / r1[1]; m3 = r3[1] / r1[1];
+  r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
+  r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
+  s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
+  s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
+  s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
+  s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
+
+  /* choose pivot - or die */
+  if (fabsf (r3[2]) > fabsf (r2[2]))
+    SWAP_ROWS (r3, r2);
+  if (0.0 == r2[2])
+    return FALSE;
+
+  /* eliminate third variable */
+  m3 = r3[2] / r2[2];
+  r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
+    r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
+    r3[7] -= m3 * r2[7];
+
+  /* last check */
+  if (0.0 == r3[3])
+    return FALSE;
+
+  s = 1.0f / r3[3];             /* now back substitute row 3 */
+  r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
+
+  m2 = r2[3];                 /* now back substitute row 2 */
+  s  = 1.0f / r2[2];
+  r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
+    r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
+  m1 = r1[3];
+  r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
+    r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
+  m0 = r0[3];
+  r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
+    r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
+
+  m1 = r1[2];                 /* now back substitute row 1 */
+  s  = 1.0f / r1[1];
+  r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
+    r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
+  m0 = r0[2];
+  r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
+    r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
+
+  m0 = r0[1];                 /* now back substitute row 0 */
+  s  = 1.0f / r0[0];
+  r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
+    r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
+
+  MAT (out, 0, 0) = r0[4]; MAT (out, 0, 1) = r0[5],
+    MAT (out, 0, 2) = r0[6]; MAT (out, 0, 3) = r0[7],
+    MAT (out, 1, 0) = r1[4]; MAT (out, 1, 1) = r1[5],
+    MAT (out, 1, 2) = r1[6]; MAT (out, 1, 3) = r1[7],
+    MAT (out, 2, 0) = r2[4]; MAT (out, 2, 1) = r2[5],
+    MAT (out, 2, 2) = r2[6]; MAT (out, 2, 3) = r2[7],
+    MAT (out, 3, 0) = r3[4]; MAT (out, 3, 1) = r3[5],
+    MAT (out, 3, 2) = r3[6]; MAT (out, 3, 3) = r3[7];
+
+  return TRUE;
+}
+#undef SWAP_ROWS
+
+/*
+ * Compute inverse of a general 3d transformation matrix.
+ *
+ * @mat pointer to a CoglMatrix structure. The matrix inverse will be
+ * stored in the CoglMatrix::inv attribute.
+ *
+ * Returns: %TRUE for success, %FALSE for failure (\p singular matrix).
+ *
+ * \author Adapted from graphics gems II.
+ *
+ * Calculates the inverse of the upper left by first calculating its
+ * determinant and multiplying it to the symmetric adjust matrix of each
+ * element. Finally deals with the translation part by transforming the
+ * original translation vector using by the calculated submatrix inverse.
+ */
+static gboolean
+invert_matrix_3d_general (CoglMatrix *matrix)
+{
+  const float *in = (float *)matrix;
+  float *out = matrix->inv;
+  float pos, neg, t;
+  float det;
+
+  /* Calculate the determinant of upper left 3x3 submatrix and
+   * determine if the matrix is singular.
+   */
+  pos = neg = 0.0;
+  t =  MAT (in,0,0) * MAT (in,1,1) * MAT (in,2,2);
+  if (t >= 0.0) pos += t; else neg += t;
+
+  t =  MAT (in,1,0) * MAT (in,2,1) * MAT (in,0,2);
+  if (t >= 0.0) pos += t; else neg += t;
+
+  t =  MAT (in,2,0) * MAT (in,0,1) * MAT (in,1,2);
+  if (t >= 0.0) pos += t; else neg += t;
+
+  t = -MAT (in,2,0) * MAT (in,1,1) * MAT (in,0,2);
+  if (t >= 0.0) pos += t; else neg += t;
+
+  t = -MAT (in,1,0) * MAT (in,0,1) * MAT (in,2,2);
+  if (t >= 0.0) pos += t; else neg += t;
+
+  t = -MAT (in,0,0) * MAT (in,2,1) * MAT (in,1,2);
+  if (t >= 0.0) pos += t; else neg += t;
+
+  det = pos + neg;
+
+  if (det*det < 1e-25)
+    return FALSE;
+
+  det = 1.0f / det;
+  MAT (out,0,0) =
+    (  (MAT (in, 1, 1)*MAT (in, 2, 2) - MAT (in, 2, 1)*MAT (in, 1, 2) )*det);
+  MAT (out,0,1) =
+    (- (MAT (in, 0, 1)*MAT (in, 2, 2) - MAT (in, 2, 1)*MAT (in, 0, 2) )*det);
+  MAT (out,0,2) =
+    (  (MAT (in, 0, 1)*MAT (in, 1, 2) - MAT (in, 1, 1)*MAT (in, 0, 2) )*det);
+  MAT (out,1,0) =
+    (- (MAT (in,1,0)*MAT (in,2,2) - MAT (in,2,0)*MAT (in,1,2) )*det);
+  MAT (out,1,1) =
+    (  (MAT (in,0,0)*MAT (in,2,2) - MAT (in,2,0)*MAT (in,0,2) )*det);
+  MAT (out,1,2) =
+    (- (MAT (in,0,0)*MAT (in,1,2) - MAT (in,1,0)*MAT (in,0,2) )*det);
+  MAT (out,2,0) =
+    (  (MAT (in,1,0)*MAT (in,2,1) - MAT (in,2,0)*MAT (in,1,1) )*det);
+  MAT (out,2,1) =
+    (- (MAT (in,0,0)*MAT (in,2,1) - MAT (in,2,0)*MAT (in,0,1) )*det);
+  MAT (out,2,2) =
+    (  (MAT (in,0,0)*MAT (in,1,1) - MAT (in,1,0)*MAT (in,0,1) )*det);
+
+  /* Do the translation part */
+  MAT (out,0,3) = - (MAT (in, 0, 3) * MAT (out, 0, 0) +
+                    MAT (in, 1, 3) * MAT (out, 0, 1) +
+                    MAT (in, 2, 3) * MAT (out, 0, 2) );
+  MAT (out,1,3) = - (MAT (in, 0, 3) * MAT (out, 1, 0) +
+                    MAT (in, 1, 3) * MAT (out, 1, 1) +
+                    MAT (in, 2, 3) * MAT (out, 1, 2) );
+  MAT (out,2,3) = - (MAT (in, 0, 3) * MAT (out, 2 ,0) +
+                    MAT (in, 1, 3) * MAT (out, 2, 1) +
+                    MAT (in, 2, 3) * MAT (out, 2, 2) );
+
+  return TRUE;
+}
+
+/*
+ * Compute inverse of a 3d transformation matrix.
+ *
+ * @mat pointer to a CoglMatrix structure. The matrix inverse will be
+ * stored in the CoglMatrix::inv attribute.
+ *
+ * Returns: %TRUE for success, %FALSE for failure (\p singular matrix).
+ *
+ * If the matrix is not an angle preserving matrix then calls
+ * invert_matrix_3d_general for the actual calculation. Otherwise calculates
+ * the inverse matrix analyzing and inverting each of the scaling, rotation and
+ * translation parts.
+ */
+static gboolean
+invert_matrix_3d (CoglMatrix *matrix)
+{
+  const float *in = (float *)matrix;
+  float *out = matrix->inv;
+
+  if (!TEST_MAT_FLAGS(matrix, MAT_FLAGS_ANGLE_PRESERVING))
+    return invert_matrix_3d_general (matrix);
+
+  if (matrix->flags & MAT_FLAG_UNIFORM_SCALE)
+    {
+      float scale = (MAT (in, 0, 0) * MAT (in, 0, 0) +
+                     MAT (in, 0, 1) * MAT (in, 0, 1) +
+                     MAT (in, 0, 2) * MAT (in, 0, 2));
+
+      if (scale == 0.0)
+        return FALSE;
+
+      scale = 1.0f / scale;
+
+      /* Transpose and scale the 3 by 3 upper-left submatrix. */
+      MAT (out, 0, 0) = scale * MAT (in, 0, 0);
+      MAT (out, 1, 0) = scale * MAT (in, 0, 1);
+      MAT (out, 2, 0) = scale * MAT (in, 0, 2);
+      MAT (out, 0, 1) = scale * MAT (in, 1, 0);
+      MAT (out, 1, 1) = scale * MAT (in, 1, 1);
+      MAT (out, 2, 1) = scale * MAT (in, 1, 2);
+      MAT (out, 0, 2) = scale * MAT (in, 2, 0);
+      MAT (out, 1, 2) = scale * MAT (in, 2, 1);
+      MAT (out, 2, 2) = scale * MAT (in, 2, 2);
+    }
+  else if (matrix->flags & MAT_FLAG_ROTATION)
+    {
+      /* Transpose the 3 by 3 upper-left submatrix. */
+      MAT (out, 0, 0) = MAT (in, 0, 0);
+      MAT (out, 1, 0) = MAT (in, 0, 1);
+      MAT (out, 2, 0) = MAT (in, 0, 2);
+      MAT (out, 0, 1) = MAT (in, 1, 0);
+      MAT (out, 1, 1) = MAT (in, 1, 1);
+      MAT (out, 2, 1) = MAT (in, 1, 2);
+      MAT (out, 0, 2) = MAT (in, 2, 0);
+      MAT (out, 1, 2) = MAT (in, 2, 1);
+      MAT (out, 2, 2) = MAT (in, 2, 2);
+    }
+  else
+    {
+      /* pure translation */
+      memcpy (out, identity, 16 * sizeof (float));
+      MAT (out, 0, 3) = - MAT (in, 0, 3);
+      MAT (out, 1, 3) = - MAT (in, 1, 3);
+      MAT (out, 2, 3) = - MAT (in, 2, 3);
+      return TRUE;
+    }
+
+  if (matrix->flags & MAT_FLAG_TRANSLATION)
+    {
+      /* Do the translation part */
+      MAT (out,0,3) = - (MAT (in, 0, 3) * MAT (out, 0, 0) +
+                        MAT (in, 1, 3) * MAT (out, 0, 1) +
+                        MAT (in, 2, 3) * MAT (out, 0, 2) );
+      MAT (out,1,3) = - (MAT (in, 0, 3) * MAT (out, 1, 0) +
+                        MAT (in, 1, 3) * MAT (out, 1, 1) +
+                        MAT (in, 2, 3) * MAT (out, 1, 2) );
+      MAT (out,2,3) = - (MAT (in, 0, 3) * MAT (out, 2, 0) +
+                        MAT (in, 1, 3) * MAT (out, 2, 1) +
+                        MAT (in, 2, 3) * MAT (out, 2, 2) );
+    }
+  else
+    MAT (out, 0, 3) = MAT (out, 1, 3) = MAT (out, 2, 3) = 0.0;
+
+  return TRUE;
+}
+
+/*
+ * Compute inverse of an identity transformation matrix.
+ *
+ * @mat pointer to a CoglMatrix structure. The matrix inverse will be
+ * stored in the CoglMatrix::inv attribute.
+ *
+ * Returns: always %TRUE.
+ *
+ * Simply copies identity into CoglMatrix::inv.
+ */
+static gboolean
+invert_matrix_identity (CoglMatrix *matrix)
+{
+  memcpy (matrix->inv, identity, 16 * sizeof (float));
+  return TRUE;
+}
+
+/*
+ * Compute inverse of a no-rotation 3d transformation matrix.
+ *
+ * @mat pointer to a CoglMatrix structure. The matrix inverse will be
+ * stored in the CoglMatrix::inv attribute.
+ *
+ * Returns: %TRUE for success, %FALSE for failure (\p singular matrix).
+ *
+ * Calculates the
+ */
+static gboolean
+invert_matrix_3d_no_rotation (CoglMatrix *matrix)
+{
+  const float *in = (float *)matrix;
+  float *out = matrix->inv;
+
+  if (MAT (in,0,0) == 0 || MAT (in,1,1) == 0 || MAT (in,2,2) == 0)
+    return FALSE;
+
+  memcpy (out, identity, 16 * sizeof (float));
+  MAT (out,0,0) = 1.0f / MAT (in,0,0);
+  MAT (out,1,1) = 1.0f / MAT (in,1,1);
+  MAT (out,2,2) = 1.0f / MAT (in,2,2);
+
+  if (matrix->flags & MAT_FLAG_TRANSLATION)
+    {
+      MAT (out,0,3) = - (MAT (in,0,3) * MAT (out,0,0));
+      MAT (out,1,3) = - (MAT (in,1,3) * MAT (out,1,1));
+      MAT (out,2,3) = - (MAT (in,2,3) * MAT (out,2,2));
+    }
+
+  return TRUE;
+}
+
+/*
+ * Compute inverse of a no-rotation 2d transformation matrix.
+ *
+ * @mat pointer to a CoglMatrix structure. The matrix inverse will be
+ * stored in the CoglMatrix::inv attribute.
+ *
+ * Returns: %TRUE for success, %FALSE for failure (\p singular matrix).
+ *
+ * Calculates the inverse matrix by applying the inverse scaling and
+ * translation to the identity matrix.
+ */
+static gboolean
+invert_matrix_2d_no_rotation (CoglMatrix *matrix)
+{
+  const float *in = (float *)matrix;
+  float *out = matrix->inv;
+
+  if (MAT (in, 0, 0) == 0 || MAT (in, 1, 1) == 0)
+    return FALSE;
+
+  memcpy (out, identity, 16 * sizeof (float));
+  MAT (out, 0, 0) = 1.0f / MAT (in, 0, 0);
+  MAT (out, 1, 1) = 1.0f / MAT (in, 1, 1);
+
+  if (matrix->flags & MAT_FLAG_TRANSLATION)
+    {
+      MAT (out, 0, 3) = - (MAT (in, 0, 3) * MAT (out, 0, 0));
+      MAT (out, 1, 3) = - (MAT (in, 1, 3) * MAT (out, 1, 1));
+    }
+
+  return TRUE;
+}
+
+#if 0
+/* broken */
+static gboolean
+invert_matrix_perspective (CoglMatrix *matrix)
+{
+  const float *in = matrix;
+  float *out = matrix->inv;
+
+  if (MAT (in,2,3) == 0)
+    return FALSE;
+
+  memcpy( out, identity, 16 * sizeof(float) );
+
+  MAT (out, 0, 0) = 1.0f / MAT (in, 0, 0);
+  MAT (out, 1, 1) = 1.0f / MAT (in, 1, 1);
+
+  MAT (out, 0, 3) = MAT (in, 0, 2);
+  MAT (out, 1, 3) = MAT (in, 1, 2);
+
+  MAT (out,2,2) = 0;
+  MAT (out,2,3) = -1;
+
+  MAT (out,3,2) = 1.0f / MAT (in,2,3);
+  MAT (out,3,3) = MAT (in,2,2) * MAT (out,3,2);
+
+  return TRUE;
+}
+#endif
+
+/*
+ * Matrix inversion function pointer type.
+ */
+typedef gboolean (*inv_mat_func)(CoglMatrix *matrix);
+
+/*
+ * Table of the matrix inversion functions according to the matrix type.
+ */
+static inv_mat_func inv_mat_tab[7] = {
+    invert_matrix_general,
+    invert_matrix_identity,
+    invert_matrix_3d_no_rotation,
+#if 0
+    /* Don't use this function for now - it fails when the projection matrix
+     * is premultiplied by a translation (ala Chromium's tilesort SPU).
+     */
+    invert_matrix_perspective,
+#else
+    invert_matrix_general,
+#endif
+    invert_matrix_3d,		/* lazy! */
+    invert_matrix_2d_no_rotation,
+    invert_matrix_3d
+};
+
+#define ZERO(x) (1<<x)
+#define ONE(x)  (1<<(x+16))
+
+#define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
+#define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
+
+#define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
+                          ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
+                          ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
+                          ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
+
+#define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
+                          ZERO(1)  |            ZERO(9)  |           \
+                          ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
+                          ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
+
+#define MASK_2D          (                      ZERO(8)  |           \
+                          ZERO(9)  |           \
+                          ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
+                          ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
+
+
+#define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
+                          ZERO(1)  |            ZERO(9)  |           \
+                          ZERO(2)  | ZERO(6)  |                      \
+                          ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
+
+#define MASK_3D          (                                           \
+                          \
+                          \
+                          ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
+
+
+#define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
+                          ZERO(1)  |                       ZERO(13) |\
+                          ZERO(2)  | ZERO(6)  |                      \
+                          ZERO(3)  | ZERO(7)  |            ZERO(15) )
+
+#define SQ(x) ((x)*(x))
+
+/*
+ * Determine type and flags from scratch.
+ *
+ * This is expensive enough to only want to do it once.
+ */
+static void
+analyse_from_scratch (CoglMatrix *matrix)
+{
+  const float *m = (float *)matrix;
+  unsigned int mask = 0;
+  unsigned int i;
+
+  for (i = 0 ; i < 16 ; i++)
+    {
+      if (m[i] == 0.0) mask |= (1<<i);
+    }
+
+  if (m[0] == 1.0f) mask |= (1<<16);
+  if (m[5] == 1.0f) mask |= (1<<21);
+  if (m[10] == 1.0f) mask |= (1<<26);
+  if (m[15] == 1.0f) mask |= (1<<31);
+
+  matrix->flags &= ~MAT_FLAGS_GEOMETRY;
+
+  /* Check for translation - no-one really cares
+  */
+  if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
+    matrix->flags |= MAT_FLAG_TRANSLATION;
+
+  /* Do the real work
+  */
+  if (mask == (unsigned int) MASK_IDENTITY)
+    matrix->type = COGL_MATRIX_TYPE_IDENTITY;
+  else if ((mask & MASK_2D_NO_ROT) == (unsigned int) MASK_2D_NO_ROT)
+    {
+      matrix->type = COGL_MATRIX_TYPE_2D_NO_ROT;
+
+      if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
+        matrix->flags |= MAT_FLAG_GENERAL_SCALE;
+    }
+  else if ((mask & MASK_2D) == (unsigned int) MASK_2D)
+    {
+      float mm = DOT2 (m, m);
+      float m4m4 = DOT2 (m+4,m+4);
+      float mm4 = DOT2 (m,m+4);
+
+      matrix->type = COGL_MATRIX_TYPE_2D;
+
+      /* Check for scale */
+      if (SQ (mm-1) > SQ (1e-6) ||
+          SQ (m4m4-1) > SQ (1e-6))
+        matrix->flags |= MAT_FLAG_GENERAL_SCALE;
+
+      /* Check for rotation */
+      if (SQ (mm4) > SQ (1e-6))
+        matrix->flags |= MAT_FLAG_GENERAL_3D;
+      else
+        matrix->flags |= MAT_FLAG_ROTATION;
+
+    }
+  else if ((mask & MASK_3D_NO_ROT) == (unsigned int) MASK_3D_NO_ROT)
+    {
+      matrix->type = COGL_MATRIX_TYPE_3D_NO_ROT;
+
+      /* Check for scale */
+      if (SQ (m[0]-m[5]) < SQ (1e-6) &&
+          SQ (m[0]-m[10]) < SQ (1e-6))
+        {
+          if (SQ (m[0]-1.0) > SQ (1e-6))
+            matrix->flags |= MAT_FLAG_UNIFORM_SCALE;
+        }
+      else
+        matrix->flags |= MAT_FLAG_GENERAL_SCALE;
+    }
+  else if ((mask & MASK_3D) == (unsigned int) MASK_3D)
+    {
+      float c1 = DOT3 (m,m);
+      float c2 = DOT3 (m+4,m+4);
+      float c3 = DOT3 (m+8,m+8);
+      float d1 = DOT3 (m, m+4);
+      float cp[3];
+
+      matrix->type = COGL_MATRIX_TYPE_3D;
+
+      /* Check for scale */
+      if (SQ (c1-c2) < SQ (1e-6) && SQ (c1-c3) < SQ (1e-6))
+        {
+          if (SQ (c1-1.0) > SQ (1e-6))
+            matrix->flags |= MAT_FLAG_UNIFORM_SCALE;
+          /* else no scale at all */
+        }
+      else
+        matrix->flags |= MAT_FLAG_GENERAL_SCALE;
+
+      /* Check for rotation */
+      if (SQ (d1) < SQ (1e-6))
+        {
+          CROSS3 ( cp, m, m+4);
+          SUB_3V ( cp, cp, (m+8));
+          if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
+            matrix->flags |= MAT_FLAG_ROTATION;
+          else
+            matrix->flags |= MAT_FLAG_GENERAL_3D;
+        }
+      else
+        matrix->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
+    }
+  else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0f)
+    {
+      matrix->type = COGL_MATRIX_TYPE_PERSPECTIVE;
+      matrix->flags |= MAT_FLAG_GENERAL;
+    }
+  else
+    {
+      matrix->type = COGL_MATRIX_TYPE_GENERAL;
+      matrix->flags |= MAT_FLAG_GENERAL;
+    }
+}
+
+/*
+ * Analyze a matrix given that its flags are accurate.
+ *
+ * This is the more common operation, hopefully.
+ */
+static void
+analyse_from_flags (CoglMatrix *matrix)
+{
+  const float *m = (float *)matrix;
+
+  if (TEST_MAT_FLAGS(matrix, 0))
+    matrix->type = COGL_MATRIX_TYPE_IDENTITY;
+  else if (TEST_MAT_FLAGS(matrix, (MAT_FLAG_TRANSLATION |
+                                   MAT_FLAG_UNIFORM_SCALE |
+                                   MAT_FLAG_GENERAL_SCALE)))
+    {
+      if ( m[10] == 1.0f && m[14] == 0.0f )
+        matrix->type = COGL_MATRIX_TYPE_2D_NO_ROT;
+      else
+        matrix->type = COGL_MATRIX_TYPE_3D_NO_ROT;
+    }
+  else if (TEST_MAT_FLAGS (matrix, MAT_FLAGS_3D))
+    {
+      if (                               m[ 8]==0.0f
+          &&                             m[ 9]==0.0f
+          && m[2]==0.0f && m[6]==0.0f && m[10]==1.0f && m[14]==0.0f)
+        {
+          matrix->type = COGL_MATRIX_TYPE_2D;
+        }
+      else
+        matrix->type = COGL_MATRIX_TYPE_3D;
+    }
+  else if (                 m[4]==0.0f                 && m[12]==0.0f
+           && m[1]==0.0f                               && m[13]==0.0f
+           && m[2]==0.0f && m[6]==0.0f
+           && m[3]==0.0f && m[7]==0.0f && m[11]==-1.0f && m[15]==0.0f)
+    {
+      matrix->type = COGL_MATRIX_TYPE_PERSPECTIVE;
+    }
+  else
+    matrix->type = COGL_MATRIX_TYPE_GENERAL;
+}
+
+/*
+ * Analyze and update the type and flags of a matrix.
+ *
+ * If the matrix type is dirty then calls either analyse_from_scratch() or
+ * analyse_from_flags() to determine its type, according to whether the flags
+ * are dirty or not, respectively. If the matrix has an inverse and it's dirty
+ * then calls matrix_invert(). Finally clears the dirty flags.
+ */
+static void
+_cogl_matrix_update_type_and_flags (CoglMatrix *matrix)
+{
+  if (matrix->flags & MAT_DIRTY_TYPE)
+    {
+      if (matrix->flags & MAT_DIRTY_FLAGS)
+        analyse_from_scratch (matrix);
+      else
+        analyse_from_flags (matrix);
+    }
+
+  matrix->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
+}
 
-#include <cogl.h>
-#include "cogl-debug.h"
-#include <cogl-quaternion.h>
-#include <cogl-quaternion-private.h>
-#include <cogl-matrix.h>
-#include <cogl-matrix-private.h>
-#ifdef USE_MESA_MATRIX_API
-#include <cogl-matrix-mesa.h>
-#endif
+/*
+ * Compute inverse of a transformation matrix.
+ *
+ * @mat pointer to a CoglMatrix structure. The matrix inverse will be
+ * stored in the CoglMatrix::inv attribute.
+ *
+ * Returns: %TRUE for success, %FALSE for failure (\p singular matrix).
+ *
+ * Calls the matrix inversion function in inv_mat_tab corresponding to the
+ * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
+ * and copies the identity matrix into CoglMatrix::inv.
+ */
+static gboolean
+_cogl_matrix_update_inverse (CoglMatrix *matrix)
+{
+  if (matrix->flags & MAT_DIRTY_FLAGS ||
+      matrix->flags & MAT_DIRTY_INVERSE)
+    {
+      _cogl_matrix_update_type_and_flags (matrix);
 
-#include <glib.h>
-#include <math.h>
-#include <string.h>
+      if (inv_mat_tab[matrix->type](matrix))
+        matrix->flags &= ~MAT_FLAG_SINGULAR;
+      else
+        {
+          matrix->flags |= MAT_FLAG_SINGULAR;
+          memcpy (matrix->inv, identity, 16 * sizeof (float));
+        }
 
-#ifdef _COGL_SUPPORTS_GTYPE_INTEGRATION
-#include <cogl-gtype-private.h>
-COGL_GTYPE_DEFINE_BOXED ("Matrix", matrix,
-                         cogl_matrix_copy,
-                         cogl_matrix_free);
-#endif
+      matrix->flags &= ~MAT_DIRTY_INVERSE;
+    }
 
-void
-cogl_matrix_init_identity (CoglMatrix *matrix)
-{
-#ifndef USE_MESA_MATRIX_API
-  matrix->xx = 1; matrix->xy = 0; matrix->xz = 0; matrix->xw = 0;
-  matrix->yx = 0; matrix->yy = 1; matrix->yz = 0; matrix->yw = 0;
-  matrix->zx = 0; matrix->zy = 0; matrix->zz = 1; matrix->zw = 0;
-  matrix->wx = 0; matrix->wy = 0; matrix->wz = 0; matrix->ww = 1;
-#else
-  _cogl_matrix_init_identity (matrix);
-#endif
-  _COGL_MATRIX_DEBUG_PRINT (matrix);
+  if (matrix->flags & MAT_FLAG_SINGULAR)
+    return FALSE;
+  else
+    return TRUE;
 }
 
-void
-cogl_matrix_init_from_quaternion (CoglMatrix *matrix,
-                                  CoglQuaternion *quaternion)
+gboolean
+cogl_matrix_get_inverse (const CoglMatrix *matrix, CoglMatrix *inverse)
 {
-  _cogl_matrix_init_from_quaternion (matrix, quaternion);
+  if (_cogl_matrix_update_inverse ((CoglMatrix *)matrix))
+    {
+      cogl_matrix_init_from_array (inverse, matrix->inv);
+      return TRUE;
+    }
+  else
+    {
+      cogl_matrix_init_identity (inverse);
+      return FALSE;
+    }
 }
 
-void
-cogl_matrix_multiply (CoglMatrix *result,
-		      const CoglMatrix *a,
-		      const CoglMatrix *b)
+/*
+ * Generate a 4x4 transformation matrix from glRotate parameters, and
+ * post-multiply the input matrix by it.
+ *
+ * \author
+ * This function was contributed by Erich Boleyn (erich uruk org).
+ * Optimizations contributed by Rudolf Opalla (rudi khm de).
+ */
+static void
+_cogl_matrix_rotate (CoglMatrix *matrix,
+                     float angle,
+                     float x,
+                     float y,
+                     float z)
 {
-#ifndef USE_MESA_MATRIX_API
-  CoglMatrix r;
-
-  /* row 0 */
-  r.xx = a->xx * b->xx + a->xy * b->yx + a->xz * b->zx + a->xw * b->wx;
-  r.xy = a->xx * b->xy + a->xy * b->yy + a->xz * b->zy + a->xw * b->wy;
-  r.xz = a->xx * b->xz + a->xy * b->yz + a->xz * b->zz + a->xw * b->wz;
-  r.xw = a->xx * b->xw + a->xy * b->yw + a->xz * b->zw + a->xw * b->ww;
-
-  /* row 1 */
-  r.yx = a->yx * b->xx + a->yy * b->yx + a->yz * b->zx + a->yw * b->wx;
-  r.yy = a->yx * b->xy + a->yy * b->yy + a->yz * b->zy + a->yw * b->wy;
-  r.yz = a->yx * b->xz + a->yy * b->yz + a->yz * b->zz + a->yw * b->wz;
-  r.yw = a->yx * b->xw + a->yy * b->yw + a->yz * b->zw + a->yw * b->ww;
-
-  /* row 2 */
-  r.zx = a->zx * b->xx + a->zy * b->yx + a->zz * b->zx + a->zw * b->wx;
-  r.zy = a->zx * b->xy + a->zy * b->yy + a->zz * b->zy + a->zw * b->wy;
-  r.zz = a->zx * b->xz + a->zy * b->yz + a->zz * b->zz + a->zw * b->wz;
-  r.zw = a->zx * b->xw + a->zy * b->yw + a->zz * b->zw + a->zw * b->ww;
-
-  /* row 3 */
-  r.wx = a->wx * b->xx + a->wy * b->yx + a->wz * b->zx + a->ww * b->wx;
-  r.wy = a->wx * b->xy + a->wy * b->yy + a->wz * b->zy + a->ww * b->wy;
-  r.wz = a->wx * b->xz + a->wy * b->yz + a->wz * b->zz + a->ww * b->wz;
-  r.ww = a->wx * b->xw + a->wy * b->yw + a->wz * b->zw + a->ww * b->ww;
-
-  /* The idea was that having this unrolled; it might be easier for the
-   * compiler to vectorize, but that's probably not true. Mesa does it
-   * using a single for (i=0; i<4; i++) approach, maybe that's better...
-   */
+  float xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
+  float m[16];
+  gboolean optimized;
 
-  *result = r;
-#else
-  _cogl_matrix_multiply (result, a, b);
-#endif
-  _COGL_MATRIX_DEBUG_PRINT (result);
+  s = sinf (angle * DEG2RAD);
+  c = cosf (angle * DEG2RAD);
+
+  memcpy (m, identity, 16 * sizeof (float));
+  optimized = FALSE;
+
+#define M(row,col)  m[col*4+row]
+
+  if (x == 0.0f)
+    {
+      if (y == 0.0f)
+        {
+          if (z != 0.0f)
+            {
+              optimized = TRUE;
+              /* rotate only around z-axis */
+              M (0,0) = c;
+              M (1,1) = c;
+              if (z < 0.0f)
+                {
+                  M (0,1) = s;
+                  M (1,0) = -s;
+                }
+              else
+                {
+                  M (0,1) = -s;
+                  M (1,0) = s;
+                }
+            }
+        }
+      else if (z == 0.0f)
+        {
+          optimized = TRUE;
+          /* rotate only around y-axis */
+          M (0,0) = c;
+          M (2,2) = c;
+          if (y < 0.0f)
+            {
+              M (0,2) = -s;
+              M (2,0) = s;
+            }
+          else
+            {
+              M (0,2) = s;
+              M (2,0) = -s;
+            }
+        }
+    }
+  else if (y == 0.0f)
+    {
+      if (z == 0.0f)
+        {
+          optimized = TRUE;
+          /* rotate only around x-axis */
+          M (1,1) = c;
+          M (2,2) = c;
+          if (x < 0.0f)
+            {
+              M (1,2) = s;
+              M (2,1) = -s;
+            }
+          else
+            {
+              M (1,2) = -s;
+              M (2,1) = s;
+            }
+        }
+    }
+
+  if (!optimized)
+    {
+      const float mag = sqrtf (x * x + y * y + z * z);
+
+      if (mag <= 1.0e-4)
+        {
+          /* no rotation, leave mat as-is */
+          return;
+        }
+
+      x /= mag;
+      y /= mag;
+      z /= mag;
+
+
+      /*
+       *     Arbitrary axis rotation matrix.
+       *
+       *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
+       *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
+       *  (which is about the X-axis), and the two composite transforms
+       *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
+       *  from the arbitrary axis to the X-axis then back.  They are
+       *  all elementary rotations.
+       *
+       *  Rz' is a rotation about the Z-axis, to bring the axis vector
+       *  into the x-z plane.  Then Ry' is applied, rotating about the
+       *  Y-axis to bring the axis vector parallel with the X-axis.  The
+       *  rotation about the X-axis is then performed.  Ry and Rz are
+       *  simply the respective inverse transforms to bring the arbitrary
+       *  axis back to it's original orientation.  The first transforms
+       *  Rz' and Ry' are considered inverses, since the data from the
+       *  arbitrary axis gives you info on how to get to it, not how
+       *  to get away from it, and an inverse must be applied.
+       *
+       *  The basic calculation used is to recognize that the arbitrary
+       *  axis vector (x, y, z), since it is of unit length, actually
+       *  represents the sines and cosines of the angles to rotate the
+       *  X-axis to the same orientation, with theta being the angle about
+       *  Z and phi the angle about Y (in the order described above)
+       *  as follows:
+       *
+       *  cos ( theta ) = x / sqrt ( 1 - z^2 )
+       *  sin ( theta ) = y / sqrt ( 1 - z^2 )
+       *
+       *  cos ( phi ) = sqrt ( 1 - z^2 )
+       *  sin ( phi ) = z
+       *
+       *  Note that cos ( phi ) can further be inserted to the above
+       *  formulas:
+       *
+       *  cos ( theta ) = x / cos ( phi )
+       *  sin ( theta ) = y / sin ( phi )
+       *
+       *  ...etc.  Because of those relations and the standard trigonometric
+       *  relations, it is pssible to reduce the transforms down to what
+       *  is used below.  It may be that any primary axis chosen will give the
+       *  same results (modulo a sign convention) using thie method.
+       *
+       *  Particularly nice is to notice that all divisions that might
+       *  have caused trouble when parallel to certain planes or
+       *  axis go away with care paid to reducing the expressions.
+       *  After checking, it does perform correctly under all cases, since
+       *  in all the cases of division where the denominator would have
+       *  been zero, the numerator would have been zero as well, giving
+       *  the expected result.
+       */
+
+      xx = x * x;
+      yy = y * y;
+      zz = z * z;
+      xy = x * y;
+      yz = y * z;
+      zx = z * x;
+      xs = x * s;
+      ys = y * s;
+      zs = z * s;
+      one_c = 1.0f - c;
+
+      /* We already hold the identity-matrix so we can skip some statements */
+      M (0,0) = (one_c * xx) + c;
+      M (0,1) = (one_c * xy) - zs;
+      M (0,2) = (one_c * zx) + ys;
+      /*    M (0,3) = 0.0f; */
+
+      M (1,0) = (one_c * xy) + zs;
+      M (1,1) = (one_c * yy) + c;
+      M (1,2) = (one_c * yz) - xs;
+      /*    M (1,3) = 0.0f; */
+
+      M (2,0) = (one_c * zx) - ys;
+      M (2,1) = (one_c * yz) + xs;
+      M (2,2) = (one_c * zz) + c;
+      /*    M (2,3) = 0.0f; */
+
+      /*
+         M (3,0) = 0.0f;
+         M (3,1) = 0.0f;
+         M (3,2) = 0.0f;
+         M (3,3) = 1.0f;
+         */
+    }
+#undef M
+
+  matrix_multiply_array_with_flags (matrix, m, MAT_FLAG_ROTATION);
 }
 
 void
@@ -123,75 +1333,43 @@ cogl_matrix_rotate (CoglMatrix *matrix,
 		    float y,
 		    float z)
 {
-#ifndef USE_MESA_MATRIX_API
-  CoglMatrix rotation;
-  CoglMatrix result;
-  float c, s;
-
-  angle *= G_PI / 180.0f;
-  c = cosf (angle);
-  s = sinf (angle);
-
-  rotation.xx = x * x * (1.0f - c) + c;
-  rotation.yx = y * x * (1.0f - c) + z * s;
-  rotation.zx = x * z * (1.0f - c) - y * s;
-  rotation.wx = 0.0f;
-
-  rotation.xy = x * y * (1.0f - c) - z * s;
-  rotation.yy = y * y * (1.0f - c) + c;
-  rotation.zy = y * z * (1.0f - c) + x * s;
-  rotation.wy = 0.0f;
-
-  rotation.xz = x * z * (1.0f - c) + y * s;
-  rotation.yz = y * z * (1.0f - c) - x * s;
-  rotation.zz = z * z * (1.0f - c) + c;
-  rotation.wz = 0.0f;
-
-  rotation.xw = 0.0f;
-  rotation.yw = 0.0f;
-  rotation.zw = 0.0f;
-  rotation.ww = 1.0f;
-
-  cogl_matrix_multiply (&result, matrix, &rotation);
-  *matrix = result;
-#else
   _cogl_matrix_rotate (matrix, angle, x, y, z);
-#endif
   _COGL_MATRIX_DEBUG_PRINT (matrix);
 }
 
-void
-cogl_matrix_translate (CoglMatrix *matrix,
-		       float x,
-		       float y,
-		       float z)
+/*
+ * Apply a perspective projection matrix.
+ *
+ * Creates the projection matrix and multiplies it with matrix, marking the
+ * MAT_FLAG_PERSPECTIVE flag.
+ */
+static void
+_cogl_matrix_frustum (CoglMatrix *matrix,
+                      float left,
+                      float right,
+                      float bottom,
+                      float top,
+                      float nearval,
+                      float farval)
 {
-#ifndef USE_MESA_MATRIX_API
-  matrix->xw = matrix->xx * x + matrix->xy * y + matrix->xz * z + matrix->xw;
-  matrix->yw = matrix->yx * x + matrix->yy * y + matrix->yz * z + matrix->yw;
-  matrix->zw = matrix->zx * x + matrix->zy * y + matrix->zz * z + matrix->zw;
-  matrix->ww = matrix->wx * x + matrix->wy * y + matrix->wz * z + matrix->ww;
-#else
-  _cogl_matrix_translate (matrix, x, y, z);
-#endif
-  _COGL_MATRIX_DEBUG_PRINT (matrix);
-}
+  float x, y, a, b, c, d;
+  float m[16];
 
-void
-cogl_matrix_scale (CoglMatrix *matrix,
-		   float sx,
-		   float sy,
-		   float sz)
-{
-#ifndef USE_MESA_MATRIX_API
-  matrix->xx *= sx; matrix->xy *= sy; matrix->xz *= sz;
-  matrix->yx *= sx; matrix->yy *= sy; matrix->yz *= sz;
-  matrix->zx *= sx; matrix->zy *= sy; matrix->zz *= sz;
-  matrix->wx *= sx; matrix->wy *= sy; matrix->wz *= sz;
-#else
-  _cogl_matrix_scale (matrix, sx, sy, sz);
-#endif
-  _COGL_MATRIX_DEBUG_PRINT (matrix);
+  x = (2.0f * nearval) / (right - left);
+  y = (2.0f * nearval) / (top - bottom);
+  a = (right + left) / (right - left);
+  b = (top + bottom) / (top - bottom);
+  c = -(farval + nearval) / ( farval - nearval);
+  d = -(2.0f * farval * nearval) / (farval - nearval);  /* error? */
+
+#define M(row,col)  m[col*4+row]
+  M (0,0) = x;     M (0,1) = 0.0f;  M (0,2) = a;      M (0,3) = 0.0f;
+  M (1,0) = 0.0f;  M (1,1) = y;     M (1,2) = b;      M (1,3) = 0.0f;
+  M (2,0) = 0.0f;  M (2,1) = 0.0f;  M (2,2) = c;      M (2,3) = d;
+  M (3,0) = 0.0f;  M (3,1) = 0.0f;  M (3,2) = -1.0f;  M (3,3) = 0.0f;
+#undef M
+
+  matrix_multiply_array_with_flags (matrix, m, MAT_FLAG_PERSPECTIVE);
 }
 
 void
@@ -203,41 +1381,7 @@ cogl_matrix_frustum (CoglMatrix *matrix,
                      float       z_near,
                      float       z_far)
 {
-#ifndef USE_MESA_MATRIX_API
-  float x, y, a, b, c, d;
-  CoglMatrix frustum;
-
-  x = (2.0f * z_near) / (right - left);
-  y = (2.0f * z_near) / (top - bottom);
-  a = (right + left) / (right - left);
-  b = (top + bottom) / (top - bottom);
-  c = -(z_far + z_near) / ( z_far - z_near);
-  d = -(2.0f * z_far* z_near) / (z_far - z_near);
-
-  frustum.xx = x;
-  frustum.yx = 0.0f;
-  frustum.zx = 0.0f;
-  frustum.wx = 0.0f;
-
-  frustum.xy = 0.0f;
-  frustum.yy = y;
-  frustum.zy = 0.0f;
-  frustum.wy = 0.0f;
-
-  frustum.xz = a;
-  frustum.yz = b;
-  frustum.zz = c;
-  frustum.wz = -1.0f;
-
-  frustum.xw = 0.0f;
-  frustum.yw = 0.0f;
-  frustum.zw = d;
-  frustum.ww = 0.0f;
-
-  cogl_matrix_multiply (matrix, matrix, &frustum);
-#else
   _cogl_matrix_frustum (matrix, left, right, bottom, top, z_near, z_far);
-#endif
   _COGL_MATRIX_DEBUG_PRINT (matrix);
 }
 
@@ -260,6 +1404,50 @@ cogl_matrix_perspective (CoglMatrix *matrix,
   _COGL_MATRIX_DEBUG_PRINT (matrix);
 }
 
+/*
+ * Apply an orthographic projection matrix.
+ *
+ * Creates the projection matrix and multiplies it with matrix, marking the
+ * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
+ */
+static void
+_cogl_matrix_ortho (CoglMatrix *matrix,
+                    float left,
+                    float right,
+                    float bottom,
+                    float top,
+                    float nearval,
+                    float farval)
+{
+  float m[16];
+
+#define M(row,col)  m[col*4+row]
+  M (0,0) = 2.0f / (right-left);
+  M (0,1) = 0.0f;
+  M (0,2) = 0.0f;
+  M (0,3) = -(right+left) / (right-left);
+
+  M (1,0) = 0.0f;
+  M (1,1) = 2.0f / (top-bottom);
+  M (1,2) = 0.0f;
+  M (1,3) = -(top+bottom) / (top-bottom);
+
+  M (2,0) = 0.0f;
+  M (2,1) = 0.0f;
+  M (2,2) = -2.0f / (farval-nearval);
+  M (2,3) = -(farval+nearval) / (farval-nearval);
+
+  M (3,0) = 0.0f;
+  M (3,1) = 0.0f;
+  M (3,2) = 0.0f;
+  M (3,3) = 1.0f;
+#undef M
+
+  matrix_multiply_array_with_flags (matrix, m,
+                                    (MAT_FLAG_GENERAL_SCALE |
+                                     MAT_FLAG_TRANSLATION));
+}
+
 void
 cogl_matrix_ortho (CoglMatrix *matrix,
                    float left,
@@ -269,40 +1457,255 @@ cogl_matrix_ortho (CoglMatrix *matrix,
                    float near_val,
                    float far_val)
 {
-#ifndef USE_MESA_MATRIX_API
-  CoglMatrix ortho;
-
-  /* column 0 */
-  ortho.xx = 2.0 / (right - left);
-  ortho.yx = 0.0;
-  ortho.zx = 0.0;
-  ortho.wx = 0.0;
-
-  /* column 1 */
-  ortho.xy = 0.0;
-  ortho.yy = 2.0 / (top - bottom);
-  ortho.zy = 0.0;
-  ortho.wy = 0.0;
-
-  /* column 2 */
-  ortho.xz = 0.0;
-  ortho.yz = 0.0;
-  ortho.zz = -2.0 / (far_val - near_val);
-  ortho.wz = 0.0;
-
-  /* column 3 */
-  ortho.xw = -(right + left) / (right - left);
-  ortho.yw = -(top + bottom) / (top - bottom);
-  ortho.zw = -(far_val + near_val) / (far_val - near_val);
-  ortho.ww = 1.0;
-
-  cogl_matrix_multiply (matrix, matrix, &ortho);
-#else
   _cogl_matrix_ortho (matrix, left, right, bottom, top, near_val, far_val);
+  _COGL_MATRIX_DEBUG_PRINT (matrix);
+}
+
+/*
+ * Multiply a matrix with a general scaling matrix.
+ *
+ * Multiplies in-place the elements of matrix by the scale factors. Checks if
+ * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
+ * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
+ * MAT_DIRTY_INVERSE dirty flags.
+ */
+static void
+_cogl_matrix_scale (CoglMatrix *matrix, float x, float y, float z)
+{
+  float *m = (float *)matrix;
+  m[0] *= x;   m[4] *= y;   m[8]  *= z;
+  m[1] *= x;   m[5] *= y;   m[9]  *= z;
+  m[2] *= x;   m[6] *= y;   m[10] *= z;
+  m[3] *= x;   m[7] *= y;   m[11] *= z;
+
+  if (fabsf (x - y) < 1e-8 && fabsf (x - z) < 1e-8)
+    matrix->flags |= MAT_FLAG_UNIFORM_SCALE;
+  else
+    matrix->flags |= MAT_FLAG_GENERAL_SCALE;
+
+  matrix->flags |= (MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
+}
+
+void
+cogl_matrix_scale (CoglMatrix *matrix,
+		   float sx,
+		   float sy,
+		   float sz)
+{
+  _cogl_matrix_scale (matrix, sx, sy, sz);
+  _COGL_MATRIX_DEBUG_PRINT (matrix);
+}
+
+/*
+ * Multiply a matrix with a translation matrix.
+ *
+ * Adds the translation coordinates to the elements of matrix in-place.  Marks
+ * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
+ * dirty flags.
+ */
+static void
+_cogl_matrix_translate (CoglMatrix *matrix, float x, float y, float z)
+{
+  float *m = (float *)matrix;
+  m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
+  m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
+  m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
+  m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
+
+  matrix->flags |= (MAT_FLAG_TRANSLATION |
+                    MAT_DIRTY_TYPE |
+                    MAT_DIRTY_INVERSE);
+}
+
+void
+cogl_matrix_translate (CoglMatrix *matrix,
+		       float x,
+		       float y,
+		       float z)
+{
+  _cogl_matrix_translate (matrix, x, y, z);
+  _COGL_MATRIX_DEBUG_PRINT (matrix);
+}
+
+#if 0
+/*
+ * Set matrix to do viewport and depthrange mapping.
+ * Transforms Normalized Device Coords to window/Z values.
+ */
+static void
+_cogl_matrix_viewport (CoglMatrix *matrix,
+                       float x, float y,
+                       float width, float height,
+                       float zNear, float zFar, float depthMax)
+{
+  float *m = (float *)matrix;
+  m[MAT_SX] = width / 2.0f;
+  m[MAT_TX] = m[MAT_SX] + x;
+  m[MAT_SY] = height / 2.0f;
+  m[MAT_TY] = m[MAT_SY] + y;
+  m[MAT_SZ] = depthMax * ((zFar - zNear) / 2.0f);
+  m[MAT_TZ] = depthMax * ((zFar - zNear) / 2.0f + zNear);
+  matrix->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
+  matrix->type = COGL_MATRIX_TYPE_3D_NO_ROT;
+}
+#endif
+
+/*
+ * Set a matrix to the identity matrix.
+ *
+ * @mat matrix.
+ *
+ * Copies ::identity into \p CoglMatrix::m, and into CoglMatrix::inv if
+ * not NULL. Sets the matrix type to identity, resets the flags. It
+ * doesn't initialize the inverse matrix, it just marks it dirty.
+ */
+static void
+_cogl_matrix_init_identity (CoglMatrix *matrix)
+{
+  memcpy (matrix, identity, 16 * sizeof (float));
+
+  matrix->type = COGL_MATRIX_TYPE_IDENTITY;
+  matrix->flags = MAT_DIRTY_INVERSE;
+}
+
+void
+cogl_matrix_init_identity (CoglMatrix *matrix)
+{
+  _cogl_matrix_init_identity (matrix);
+  _COGL_MATRIX_DEBUG_PRINT (matrix);
+}
+
+#if 0
+/*
+ * Test if the given matrix preserves vector lengths.
+ */
+static gboolean
+_cogl_matrix_is_length_preserving (const CoglMatrix *m)
+{
+  return TEST_MAT_FLAGS (m, MAT_FLAGS_LENGTH_PRESERVING);
+}
+
+/*
+ * Test if the given matrix does any rotation.
+ * (or perhaps if the upper-left 3x3 is non-identity)
+ */
+static gboolean
+_cogl_matrix_has_rotation (const CoglMatrix *matrix)
+{
+  if (matrix->flags & (MAT_FLAG_GENERAL |
+                       MAT_FLAG_ROTATION |
+                       MAT_FLAG_GENERAL_3D |
+                       MAT_FLAG_PERSPECTIVE))
+    return TRUE;
+  else
+    return FALSE;
+}
+
+static gboolean
+_cogl_matrix_is_general_scale (const CoglMatrix *matrix)
+{
+  return (matrix->flags & MAT_FLAG_GENERAL_SCALE) ? TRUE : FALSE;
+}
+
+static gboolean
+_cogl_matrix_is_dirty (const CoglMatrix *matrix)
+{
+  return (matrix->flags & MAT_DIRTY_ALL) ? TRUE : FALSE;
+}
 #endif
+
+/*
+ * Loads a matrix array into CoglMatrix.
+ *
+ * @m matrix array.
+ * @mat matrix.
+ *
+ * Copies \p m into CoglMatrix::m and marks the MAT_FLAG_GENERAL and
+ * MAT_DIRTY_ALL
+ * flags.
+ */
+static void
+_cogl_matrix_init_from_array (CoglMatrix *matrix, const float *array)
+{
+  memcpy (matrix, array, 16 * sizeof (float));
+  matrix->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL);
+}
+
+void
+cogl_matrix_init_from_array (CoglMatrix *matrix, const float *array)
+{
+  _cogl_matrix_init_from_array (matrix, array);
   _COGL_MATRIX_DEBUG_PRINT (matrix);
 }
 
+static void
+_cogl_matrix_init_from_quaternion (CoglMatrix *matrix,
+                                   CoglQuaternion *quaternion)
+{
+  float qnorm = _COGL_QUATERNION_NORM (quaternion);
+  float s = (qnorm > 0.0f) ? (2.0f / qnorm) : 0.0f;
+  float xs = quaternion->x * s;
+  float ys = quaternion->y * s;
+  float zs = quaternion->z * s;
+  float wx = quaternion->w * xs;
+  float wy = quaternion->w * ys;
+  float wz = quaternion->w * zs;
+  float xx = quaternion->x * xs;
+  float xy = quaternion->x * ys;
+  float xz = quaternion->x * zs;
+  float yy = quaternion->y * ys;
+  float yz = quaternion->y * zs;
+  float zz = quaternion->z * zs;
+
+  matrix->xx = 1.0f - (yy + zz);
+  matrix->yx = xy + wz;
+  matrix->zx = xz - wy;
+  matrix->xy = xy - wz;
+  matrix->yy = 1.0f - (xx + zz);
+  matrix->zy = yz + wx;
+  matrix->xz = xz + wy;
+  matrix->yz = yz - wx;
+  matrix->zz = 1.0f - (xx + yy);
+  matrix->xw = matrix->yw = matrix->zw = 0.0f;
+  matrix->wx = matrix->wy = matrix->wz = 0.0f;
+  matrix->ww = 1.0f;
+
+  matrix->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL);
+}
+
+void
+cogl_matrix_init_from_quaternion (CoglMatrix *matrix,
+                                  CoglQuaternion *quaternion)
+{
+  _cogl_matrix_init_from_quaternion (matrix, quaternion);
+}
+
+#if 0
+/*
+ * Transpose a float matrix.
+ */
+static void
+_cogl_matrix_util_transposef (float to[16], const float from[16])
+{
+  to[0] = from[0];
+  to[1] = from[4];
+  to[2] = from[8];
+  to[3] = from[12];
+  to[4] = from[1];
+  to[5] = from[5];
+  to[6] = from[9];
+  to[7] = from[13];
+  to[8] = from[2];
+  to[9] = from[6];
+  to[10] = from[10];
+  to[11] = from[14];
+  to[12] = from[3];
+  to[13] = from[7];
+  to[14] = from[11];
+  to[15] = from[15];
+}
+#endif
+
 void
 cogl_matrix_view_2d_in_frustum (CoglMatrix *matrix,
                                 float left,
@@ -360,17 +1763,6 @@ cogl_matrix_view_2d_in_perspective (CoglMatrix *matrix,
                                   height_2d);
 }
 
-void
-cogl_matrix_init_from_array (CoglMatrix *matrix, const float *array)
-{
-#ifndef USE_MESA_MATRIX_API
-  memcpy (matrix, array, sizeof (float) * 16);
-#else
-  _cogl_matrix_init_from_array (matrix, array);
-#endif
-  _COGL_MATRIX_DEBUG_PRINT (matrix);
-}
-
 gboolean
 cogl_matrix_equal (gconstpointer v1, gconstpointer v2)
 {
@@ -437,27 +1829,6 @@ cogl_matrix_get_array (const CoglMatrix *matrix)
   return (float *)matrix;
 }
 
-gboolean
-cogl_matrix_get_inverse (const CoglMatrix *matrix, CoglMatrix *inverse)
-{
-#ifndef USE_MESA_MATRIX_API
-#warning "cogl_matrix_get_inverse not supported without Mesa matrix API"
-  cogl_matrix_init_identity (inverse);
-  return FALSE;
-#else
-  if (_cogl_matrix_update_inverse ((CoglMatrix *)matrix))
-    {
-      cogl_matrix_init_from_array (inverse, matrix->inv);
-      return TRUE;
-    }
-  else
-    {
-      cogl_matrix_init_identity (inverse);
-      return FALSE;
-    }
-#endif
-}
-
 void
 cogl_matrix_transform_point (const CoglMatrix *matrix,
                              float *x,



[Date Prev][Date Next]   [Thread Prev][Thread Next]   [Thread Index] [Date Index] [Author Index]