[genius] Fri Jul 08 23:46:02 2016 Jiri (George) Lebl <jirka 5z com>
- From: George Lebl <jirka src gnome org>
- To: commits-list gnome org
- Cc:
- Subject: [genius] Fri Jul 08 23:46:02 2016 Jiri (George) Lebl <jirka 5z com>
- Date: Fri, 8 Jul 2016 21:47:44 +0000 (UTC)
commit 4d497cedd6076a839823a19b0c40b2757305ef27
Author: Jiri (George) Lebl <jiri lebl gmail com>
Date: Fri Jul 8 23:47:47 2016 +0200
Fri Jul 08 23:46:02 2016 Jiri (George) Lebl <jirka 5z com>
* src/funclib.c: fix StripZeroColumns when a zero matrix is passed
in.
* help/C/genius.xml: fix Planetmath links (thanks to Anders Jonsson).
Also add a couple more wikipedia links and a couple of details in
various places.
* src/calc.h: raise year to 2016
ChangeLog | 11 ++
help/C/genius.xml | 327 ++++++++++++++++++++++++++++++++-------------------
src/calc.h | 4 +-
src/funclib.c | 4 +-
src/geniustests.txt | 2 +
5 files changed, 222 insertions(+), 126 deletions(-)
---
diff --git a/ChangeLog b/ChangeLog
index d248ee9..43c871a 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,14 @@
+Fri Jul 08 23:46:02 2016 Jiri (George) Lebl <jirka 5z com>
+
+ * src/funclib.c: fix StripZeroColumns when a zero matrix is passed
+ in.
+
+ * help/C/genius.xml: fix Planetmath links (thanks to Anders Jonsson).
+ Also add a couple more wikipedia links and a couple of details in
+ various places.
+
+ * src/calc.h: raise year to 2016
+
Thu Jun 09 16:56:00 2016 Jiri (George) Lebl <jirka 5z com>
* help/C/genius.xml, lib/combinatorics/factorial.gel:
diff --git a/help/C/genius.xml b/help/C/genius.xml
index 4535c29..17de690 100644
--- a/help/C/genius.xml
+++ b/help/C/genius.xml
@@ -4,7 +4,7 @@
<!ENTITY app "<application>Genius Mathematics Tool</application>">
<!ENTITY appname "Genius">
<!ENTITY appversion "1.0.21">
- <!ENTITY date "January 2016">
+ <!ENTITY date "July 2016">
<!ENTITY legal SYSTEM "legal.xml">
@@ -3815,7 +3815,7 @@ vectorfield plot. (See <link linkend="gel-function-VectorfieldPlot"><function>V
</para>
<para>
See
- <ulink url="http://en.wikipedia.org/wiki/Catalan%27s_constant">Wikipedia</ulink>, or
+ <ulink url="http://en.wikipedia.org/wiki/Catalan%27s_constant">Wikipedia</ulink> or
<ulink url="http://mathworld.wolfram.com/CatalansConstant.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -3833,7 +3833,7 @@ vectorfield plot. (See <link linkend="gel-function-VectorfieldPlot"><function>V
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/MascheroniConstant.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/MascheroniConstant">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/Euler-MascheroniConstant.html">Mathworld</ulink> for
more information.
</para>
</listitem>
@@ -3847,7 +3847,7 @@ vectorfield plot. (See <link linkend="gel-function-VectorfieldPlot"><function>V
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Golden_ratio">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/GoldenRatio.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/GoldenRatio">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/GoldenRatio.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -3881,7 +3881,7 @@ vectorfield plot. (See <link linkend="gel-function-VectorfieldPlot"><function>V
<para>
See
<ulink url="http://en.wikipedia.org/wiki/E_(mathematical_constant)">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/E.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/E">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/e.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -3898,7 +3898,7 @@ vectorfield plot. (See <link linkend="gel-function-VectorfieldPlot"><function>V
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Pi">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/Pi.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/Pi">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/Pi.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -3924,8 +3924,8 @@ vectorfield plot. (See <link linkend="gel-function-VectorfieldPlot"><function>V
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Absolute_value">Wikipedia</ulink>,
- <ulink url="http://planetmath.org/encyclopedia/AbsoluteValue.html">Planetmath (absolute
value)</ulink>,
- <ulink url="http://planetmath.org/encyclopedia/ModulusOfComplexNumber.html">Planetmath
(modulus)</ulink>,
+ <ulink url="http://planetmath.org/AbsoluteValue">Planetmath (absolute value)</ulink>,
+ <ulink url="http://planetmath.org/ModulusOfComplexNumber">Planetmath (modulus)</ulink>,
<ulink url="http://mathworld.wolfram.com/AbsoluteValue.html">Mathworld (absolute value)</ulink> or
<ulink url="http://mathworld.wolfram.com/ComplexModulus.html">Mathworld (complex modulus)</ulink>
for more information.
@@ -4155,7 +4155,7 @@ value then <function>Sign</function> returns the direction or 0.
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Exponential_function">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/LogarithmFunction.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/LogarithmFunction">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/ExponentialFunction.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -4186,7 +4186,7 @@ value then <function>Sign</function> returns the direction or 0.
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Natural_logarithm">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/LogarithmFunction.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/LogarithmFunction">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/NaturalLogarithm.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -4296,7 +4296,8 @@ number is specified) of the given size returned. For example,
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/SquareRoot.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/Square_root">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/SquareRoot">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -4457,7 +4458,8 @@ number is specified) of the given size returned. For example,
<para>Calculates the cosine function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html">Planetmath</ulink>
for more information.
+ <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more
information.
</para>
</listitem>
</varlistentry>
@@ -4469,7 +4471,8 @@ number is specified) of the given size returned. For example,
<para>Calculates the hyperbolic cosine function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html">Planetmath</ulink> for
more information.
+ <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -4481,7 +4484,8 @@ number is specified) of the given size returned. For example,
<para>The cotangent function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html">Planetmath</ulink>
for more information.
+ <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more
information.
</para>
</listitem>
</varlistentry>
@@ -4493,7 +4497,8 @@ number is specified) of the given size returned. For example,
<para>The hyperbolic cotangent function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html">Planetmath</ulink> for
more information.
+ <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -4505,7 +4510,8 @@ number is specified) of the given size returned. For example,
<para>The cosecant function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html">Planetmath</ulink>
for more information.
+ <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more
information.
</para>
</listitem>
</varlistentry>
@@ -4517,7 +4523,8 @@ number is specified) of the given size returned. For example,
<para>The hyperbolic cosecant function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html">Planetmath</ulink> for
more information.
+ <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -4529,7 +4536,8 @@ number is specified) of the given size returned. For example,
<para>The secant function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html">Planetmath</ulink>
for more information.
+ <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more
information.
</para>
</listitem>
</varlistentry>
@@ -4541,7 +4549,8 @@ number is specified) of the given size returned. For example,
<para>The hyperbolic secant function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html">Planetmath</ulink> for
more information.
+ <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -4553,7 +4562,8 @@ number is specified) of the given size returned. For example,
<para>Calculates the sine function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html">Planetmath</ulink>
for more information.
+ <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more
information.
</para>
</listitem>
</varlistentry>
@@ -4565,7 +4575,8 @@ number is specified) of the given size returned. For example,
<para>Calculates the hyperbolic sine function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html">Planetmath</ulink> for
more information.
+ <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -4577,7 +4588,8 @@ number is specified) of the given size returned. For example,
<para>Calculates the tan function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html">Planetmath</ulink>
for more information.
+ <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/DefinitionsInTrigonometry">Planetmath</ulink> for more
information.
</para>
</listitem>
</varlistentry>
@@ -4589,7 +4601,8 @@ number is specified) of the given size returned. For example,
<para>The hyperbolic tangent function.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html">Planetmath</ulink> for
more information.
+ <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HyperbolicFunctions">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -4610,7 +4623,8 @@ number is specified) of the given size returned. For example,
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/RelativelyPrime.html">Planetmath</ulink> or
+ <ulink url="https://en.wikipedia.org/wiki/Coprime_integers">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/RelativelyPrime">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/RelativelyPrime.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -4641,7 +4655,7 @@ number is specified) of the given size returned. For example,
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Chinese_remainder_theorem">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/ChineseRemainderTheorem.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/ChineseRemainderTheorem">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/ChineseRemainderTheorem.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -4682,8 +4696,8 @@ number is specified) of the given size returned. For example,
is a prime, using the Silver-Pohlig-Hellman algorithm.</para>
<para>
See
- <ulink url="http://en.wikipedia.org/wiki/Discrete_logarithm">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/DiscreteLogarithm.html">Planetmath</ulink> or
+ <ulink url="http://en.wikipedia.org/wiki/Discrete_logarithm">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/DiscreteLogarithm">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/DiscreteLogarithm.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -4708,8 +4722,8 @@ number is specified) of the given size returned. For example,
</para>
<para>
See
- <ulink url="http://en.wikipedia.org/wiki/Euler_phi">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/EulerPhifunction.html">Planetmath</ulink> or
+ <ulink url="http://en.wikipedia.org/wiki/Euler_phi">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/EulerPhifunction">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/TotientFunction.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -4860,7 +4874,7 @@ precalculated and returned in the second column.</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Mersenne_prime">Wikipedia</ulink>,
- <ulink url="http://planetmath.org/encyclopedia/MersenneNumbers.html">Planetmath</ulink>,
+ <ulink url="http://planetmath.org/MersenneNumbers">Planetmath</ulink>,
<ulink url="http://mathworld.wolfram.com/MersennePrime.html">Mathworld</ulink> or
<ulink url="http://www.mersenne.org/">GIMPS</ulink>
for more information.
@@ -4935,7 +4949,7 @@ precalculated and returned in the second column.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/PrimeNumber.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/PrimeNumber">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/PrimeNumber.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -5012,7 +5026,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>Calculate the Legendre symbol (a/p).</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/LegendreSymbol.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/LegendreSymbol">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/LegendreSymbol.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5030,8 +5044,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
</para>
<para>
See
- <ulink url="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/LucasLhemer.html">Planetmath</ulink> or
+ <ulink url="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/LucasLhemer">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/Lucas-LehmerTest.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5044,8 +5058,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>Returns the <varname>n</varname>th Lucas number.</para>
<para>
See
- <ulink url="http://en.wikipedia.org/wiki/Lucas_number">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/LucasNumbers.html">Planetmath</ulink> or
+ <ulink url="http://en.wikipedia.org/wiki/Lucas_number">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/LucasNumbers">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/LucasNumber.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -5076,7 +5090,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Mersenne_prime">Wikipedia</ulink>,
- <ulink url="http://planetmath.org/encyclopedia/MersenneNumbers.html">Planetmath</ulink>,
+ <ulink url="http://planetmath.org/MersenneNumbers">Planetmath</ulink>,
<ulink url="http://mathworld.wolfram.com/MersennePrime.html">Mathworld</ulink> or
<ulink url="http://www.mersenne.org/">GIMPS</ulink>
for more information.
@@ -5100,7 +5114,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/MillerRabinPrimeTest.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/MillerRabinPrimeTest">Planetmath</ulink> or
<ulink
url="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5117,8 +5131,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
</para>
<para>
See
- <ulink url="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/MillerRabinPrimeTest.html">Planetmath</ulink> or
+ <ulink url="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/MillerRabinPrimeTest">Planetmath</ulink>, or
<ulink
url="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5148,7 +5162,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/MoebiusFunction.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/MoebiusFunction">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/MoebiusFunction.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5173,7 +5187,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/PrimeNumber.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/PrimeNumber">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/PrimeNumber.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -5186,7 +5200,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>Returns the p-adic valuation (number of trailing zeros in base <varname>p</varname>).</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/PAdicValuation.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/P-adic_order">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/PAdicValuation">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -5213,7 +5228,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>Return the <varname>n</varname>th prime (up to a limit).</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/PrimeNumber.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/PrimeNumber">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/PrimeNumber.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -5226,6 +5241,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>Return all prime factors of a number as a vector.</para>
<para>
See
+ <ulink url="https://en.wikipedia.org/wiki/Prime_factor">Wikipedia</ulink> or
<ulink url="http://mathworld.wolfram.com/PrimeFactor.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -5239,7 +5255,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
<userinput>b^(n-1) == 1 mod n</userinput></para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/Pseudoprime.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/Pseudoprime">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/Pseudoprime.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -5252,7 +5268,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>Removes all instances of the factor <varname>m</varname> from the number
<varname>n</varname>. That is divides by the largest power of <varname>m</varname>, that divides
<varname>n</varname>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/Divisibility.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/Divisibility">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/Factor.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -5273,7 +5289,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>Find square root of <varname>n</varname> modulo <varname>p</varname> (where
<varname>p</varname> is a prime). Null is returned if not a quadratic residue.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/QuadraticResidue.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/QuadraticResidue">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/QuadraticResidue.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5286,7 +5302,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
<para>Run the strong pseudoprime test base <varname>b</varname> on <varname>n</varname>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/StrongPseudoprime.html">Planetmath</ulink> or
+ <ulink url="https://en.wikipedia.org/wiki/Strong_pseudoprime">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/StrongPseudoprime">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/StrongPseudoprime.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5305,7 +5322,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/GreatestCommonDivisor.html">Planetmath</ulink> or
+ <ulink url="https://en.wikipedia.org/wiki/Greatest_common_divisor">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/GreatestCommonDivisor">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/GreatestCommonDivisor.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5324,7 +5342,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/LeastCommonMultiple.html">Planetmath</ulink> or
+ <ulink url="https://en.wikipedia.org/wiki/Least_common_multiple">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/LeastCommonMultiple">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/LeastCommonMultiple.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5422,10 +5441,11 @@ If <varname>q</varname> is not prime results are bogus.</para>
<listitem>
<synopsis>DotProduct (u,v)</synopsis>
<para>Get the dot product of two vectors. The vectors must be of the
-same size. No conjugates are taken so this is a bilinear form even if working over the complex
numbers.</para>
+ same size. No conjugates are taken so this is a bilinear form even if working over the
complex numbers; This is the bilinear scalar product not the sesquilinear scalar product. See <link
linkend="gel-function-HermitianProduct">HermitianProduct</link> for the standard sesquilinear inner
product.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/DotProduct.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/Dot_product">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/DotProduct">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -5451,6 +5471,7 @@ same size. No conjugates are taken so this is a bilinear form even if working o
<para>Get the Hermitian product of two vectors. The vectors must be of the same size. This is a
sesquilinear form using the identity matrix.</para>
<para>
See
+ <ulink url="https://en.wikipedia.org/wiki/Sesquilinear_form">Wikipedia</ulink> or
<ulink url="http://mathworld.wolfram.com/HermitianInnerProduct.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -5464,7 +5485,8 @@ same size. No conjugates are taken so this is a bilinear form even if working o
<para>Return an identity matrix of a given size, that is <varname>n</varname> by
<varname>n</varname>. If <varname>n</varname> is zero, returns <constant>null</constant>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/IdentityMatrix.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/Identity_matrix">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/IdentityMatrix">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -5487,7 +5509,7 @@ same size. No conjugates are taken so this is a bilinear form even if working o
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Diagonal_matrix">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/DiagonalMatrix.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/DiagonalMatrix">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -5637,7 +5659,7 @@ functions make this check. Values can be any number including complex numbers.<
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Diagonal_matrix">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/DiagonalMatrix.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/DiagonalMatrix">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -5876,7 +5898,7 @@ number of columns times the number of rows.</para>
superdiagonal being all ones. It is the Jordan block matrix of one zero eigenvalue.</para>
<para>
See
- <ulink
url="http://planetmath.org/encyclopedia/JordanCanonicalFormTheorem.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/JordanCanonicalFormTheorem">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/JordanBlock.html">Mathworld</ulink> for more information
on Jordan Canonical Form.
</para>
</listitem>
@@ -5911,7 +5933,8 @@ See also <link linkend="gel-function-CharacteristicPolynomialFunction">Character
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/CharacteristicEquation.html">Planetmath</ulink>
for more information.
+ <ulink url="https://en.wikipedia.org/wiki/Characteristic_polynomial">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/CharacteristicEquation">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -5927,7 +5950,8 @@ See also <link linkend="gel-function-CharacteristicPolynomial">CharacteristicPol
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/CharacteristicEquation.html">Planetmath</ulink>
for more information.
+ <ulink url="https://en.wikipedia.org/wiki/Characteristic_polynomial">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/CharacteristicEquation">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -5940,6 +5964,10 @@ See also <link linkend="gel-function-CharacteristicPolynomial">CharacteristicPol
return a matrix whose columns are the basis for the column space of
<varname>M</varname>. That is the space spanned by the columns of
<varname>M</varname>.</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Row_and_column_spaces">Wikipedia</ulink> for more
information.
+ </para>
</listitem>
</varlistentry>
@@ -5969,7 +5997,8 @@ return a matrix whose columns are the basis for the column space of
same as the <userinput>'</userinput> operator.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/ConjugateTranspose.html">Planetmath</ulink> for
more information.
+ <ulink url="https://en.wikipedia.org/wiki/Conjugate_transpose">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/ConjugateTranspose">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -5998,6 +6027,10 @@ result as a vector and not added together.</para>
<synopsis>CrossProduct (v,w)</synopsis>
<para>CrossProduct of two vectors in R<superscript>3</superscript> as
a column vector.</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Cross_product">Wikipedia</ulink> for more information.
+ </para>
</listitem>
</varlistentry>
@@ -6014,6 +6047,10 @@ result as a vector and not added together.</para>
<listitem>
<synopsis>DirectSum (M,N...)</synopsis>
<para>Direct sum of matrices.</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Matrix_addition#directsum">Wikipedia</ulink> for more
information.
+ </para>
</listitem>
</varlistentry>
@@ -6022,6 +6059,10 @@ result as a vector and not added together.</para>
<listitem>
<synopsis>DirectSumMatrixVector (v)</synopsis>
<para>Direct sum of a vector of matrices.</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Matrix_addition#directsum">Wikipedia</ulink> for more
information.
+ </para>
</listitem>
</varlistentry>
@@ -6037,8 +6078,8 @@ result as a vector and not added together.</para>
</para>
<para>
See
- <ulink url="http://en.wikipedia.org/wiki/Eigenvalue">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/Eigenvalue.html">Planetmath</ulink> or
+ <ulink url="http://en.wikipedia.org/wiki/Eigenvalue">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/Eigenvalue">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/Eigenvalue.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -6056,8 +6097,8 @@ the eigenvalues and their algebraic multiplicities.
</para>
<para>
See
- <ulink url="http://en.wikipedia.org/wiki/Eigenvector">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/Eigenvector.html">Planetmath</ulink> or
+ <ulink url="http://en.wikipedia.org/wiki/Eigenvector">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/Eigenvector">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/Eigenvector.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -6075,7 +6116,8 @@ a sesquilinear form. The vectors will be made orthonormal with respect to
<varname>B</varname>.</para>
<para>
See
- <ulink
url="http://planetmath.org/encyclopedia/GramSchmidtOrthogonalization.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/GramSchmidtOrthogonalization">Planetmath</ulink> for more
information.
</para>
</listitem>
</varlistentry>
@@ -6084,7 +6126,13 @@ a sesquilinear form. The vectors will be made orthonormal with respect to
<term><anchor id="gel-function-HankelMatrix"/>HankelMatrix</term>
<listitem>
<synopsis>HankelMatrix (c,r)</synopsis>
- <para>Hankel matrix.</para>
+ <para>Hankel matrix, a matrix whose skew-diagonals are constant. <varname>c</varname> is the first
row and <varname>r</varname> is the
+ last column. It is assumed that both arguments are vectors and the last element of
<varname>c</varname> is the same
+ as the first element of <varname>r</varname>.</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Hankel_matrix">Wikipedia</ulink> for more information.
+ </para>
</listitem>
</varlistentry>
@@ -6095,7 +6143,8 @@ a sesquilinear form. The vectors will be made orthonormal with respect to
<para>Hilbert matrix of order <varname>n</varname>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HilbertMatrix.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/Hilbert_matrix">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HilbertMatrix">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6105,6 +6154,10 @@ a sesquilinear form. The vectors will be made orthonormal with respect to
<listitem>
<synopsis>Image (T)</synopsis>
<para>Get the image (columnspace) of a linear transform.</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Row_and_column_spaces">Wikipedia</ulink> for more
information.
+ </para>
</listitem>
</varlistentry>
@@ -6131,7 +6184,8 @@ a sesquilinear form. The vectors will be made orthonormal with respect to
<para>Inverse Hilbert matrix of order <varname>n</varname>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HilbertMatrix.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/Hilbert_matrix">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HilbertMatrix">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6143,7 +6197,8 @@ a sesquilinear form. The vectors will be made orthonormal with respect to
<para>Is a matrix Hermitian. That is, is it equal to its conjugate transpose.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/HermitianMatrix.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/Hermitian_matrix">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/HermitianMatrix">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6180,7 +6235,7 @@ a sesquilinear form. The vectors will be made orthonormal with respect to
does <userinput>M*M' == M'*M</userinput>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/NormalMatrix.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/NormalMatrix">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/NormalMatrix.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -6207,7 +6262,8 @@ determinant.
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/PositiveDefinite.html">Planetmath</ulink> or
+ <ulink url="https://en.wikipedia.org/wiki/Positive-definite_matrix">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/PositiveDefinite">Planetmath</ulink>, or
<ulink url="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -6234,7 +6290,7 @@ determinant.
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/PositiveSemidefinite.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/PositiveSemidefinite">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html">Mathworld</ulink> for
more information.
</para>
</listitem>
@@ -6247,7 +6303,7 @@ determinant.
<para>Is a matrix skew-Hermitian. That is, is the conjugate transpose equal to negative of the
matrix.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/SkewHermitianMatrix.html">Planetmath</ulink> for
more information.
+ <ulink url="http://planetmath.org/SkewHermitianMatrix">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6261,7 +6317,7 @@ determinant.
equal the identity.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/UnitaryTransformation.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/UnitaryTransformation">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/UnitaryMatrix.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -6277,7 +6333,7 @@ determinant.
</para>
<para>
See
- <ulink
url="http://planetmath.org/encyclopedia/JordanCanonicalFormTheorem.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/JordanCanonicalFormTheorem">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/JordanBlock.html">Mathworld</ulink> for more information.
</para>
</listitem>
@@ -6306,7 +6362,7 @@ determinant.
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Kronecker_product">Wikipedia</ulink>,
- <ulink url="http://planetmath.org/encyclopedia/KroneckerProduct.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/KroneckerProduct">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/KroneckerProduct.html">Mathworld</ulink> for more
information.
</para>
<para>Version 1.0.18 onwards.</para>
@@ -6349,7 +6405,7 @@ determinant.
<para>
See
<ulink url="http://en.wikipedia.org/wiki/LU_decomposition">Wikipedia</ulink>,
- <ulink url="http://planetmath.org/encyclopedia/LUDecomposition.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/LUDecomposition">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/LUDecomposition.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -6362,7 +6418,7 @@ determinant.
<para>Get the <varname>i</varname>-<varname>j</varname> minor of a matrix.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/Minor.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/Minor">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6394,7 +6450,7 @@ determinant.
<varname>T</varname>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/Nullspace.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/Nullspace">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6408,7 +6464,7 @@ determinant.
the nullspace; the dimension of the kernel of <varname>M</varname>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/Nullity.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/Nullity">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6463,7 +6519,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
<para>
See
<ulink url="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/QRDecomposition.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/QRDecomposition">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/QRDecomposition.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -6476,7 +6532,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
<para>Return the Rayleigh quotient (also called the Rayleigh-Ritz quotient or ratio) of a matrix
and a vector.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/RayleighQuotient.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/RayleighQuotient">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6497,7 +6553,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/RayleighQuotient.html">Planetmath</ulink> for more
information on Rayleigh quotient.
+ <ulink url="http://planetmath.org/RayleighQuotient">Planetmath</ulink> for more information on
Rayleigh quotient.
</para>
</listitem>
</varlistentry>
@@ -6510,7 +6566,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
<para>Get the rank of a matrix.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/SylvestersLaw.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/SylvestersLaw">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6623,7 +6679,7 @@ Hermitian matrix (if the first element is real of course).</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Toeplitz_matrix">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/ToeplitzMatrix.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/ToeplitzMatrix">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6637,7 +6693,7 @@ Hermitian matrix (if the first element is real of course).</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Trace_(linear_algebra)">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/Trace.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/Trace">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6651,7 +6707,7 @@ Hermitian matrix (if the first element is real of course).</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Transpose">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/Transpose.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/Transpose">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6732,7 +6788,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Determinant">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/Determinant2.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/Determinant2">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6748,7 +6804,7 @@ divided to make all pivots 1.</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Row_echelon_form">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/RowEchelonForm.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/RowEchelonForm">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6762,7 +6818,7 @@ divided to make all pivots 1.</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Reduced_row_echelon_form">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/ReducedRowEchelonForm.html">Planetmath</ulink> for
more information.
+ <ulink url="http://planetmath.org/ReducedRowEchelonForm">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6780,7 +6836,7 @@ divided to make all pivots 1.</para>
<para>Get <varname>n</varname>th Catalan number.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/CatalanNumbers.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/CatalanNumbers">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6802,7 +6858,7 @@ divided to make all pivots 1.</para>
<para>Double factorial: <userinput>n(n-2)(n-4)...</userinput></para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/DoubleFactorial.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/DoubleFactorial">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6814,7 +6870,7 @@ divided to make all pivots 1.</para>
<para>Factorial: <userinput>n(n-1)(n-2)...</userinput></para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/Factorial.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/Factorial">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6826,7 +6882,7 @@ divided to make all pivots 1.</para>
<para>Falling factorial: <userinput>(n)_k = n(n-1)...(n-(k-1))</userinput></para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/FallingFactorial.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/FallingFactorial">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -6846,7 +6902,7 @@ divided to make all pivots 1.</para>
<para>
See
<ulink url="http://en.wikipedia.org/wiki/Fibonacci_number">Wikipedia</ulink> or
- <ulink url="http://planetmath.org/encyclopedia/FibonacciSequence.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/FibonacciSequence">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/FibonacciNumber.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -6943,9 +6999,9 @@ divided to make all pivots 1.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/MultinomialTheorem.html">Planetmath</ulink>,
- <ulink url="http://mathworld.wolfram.com/MultinomialCoefficient.html">Mathworld</ulink>, or
- <ulink url="http://en.wikipedia.org/wiki/Multinomial_theorem">Wikipedia</ulink> for more
information.
+ <ulink url="http://en.wikipedia.org/wiki/Multinomial_theorem">Wikipedia</ulink>,
+ <ulink url="http://planetmath.org/MultinomialTheorem">Planetmath</ulink>, or
+ <ulink url="http://mathworld.wolfram.com/MultinomialCoefficient.html">Mathworld</ulink> for more
information.
</para>
</listitem>
</varlistentry>
@@ -6986,7 +7042,7 @@ do (
iterations.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/PascalsTriangle.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/PascalsTriangle">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7012,7 +7068,7 @@ do (
<para>(Pochhammer) Rising factorial: (n)_k = n(n+1)...(n+(k-1)).</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/RisingFactorial.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/RisingFactorial">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7025,7 +7081,7 @@ do (
<para>Stirling number of the first kind.</para>
<para>
See
- <ulink
url="http://planetmath.org/encyclopedia/StirlingNumbersOfTheFirstKind.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/StirlingNumbersOfTheFirstKind">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html">Mathworld</ulink> for
more information.
</para>
</listitem>
@@ -7039,7 +7095,7 @@ do (
<para>Stirling number of the second kind.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/StirlingNumbersSecondKind.html">Planetmath</ulink>
or
+ <ulink url="http://planetmath.org/StirlingNumbersSecondKind">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html">Mathworld</ulink>
for more information.
</para>
</listitem>
@@ -7060,7 +7116,7 @@ do (
<para>Calculate the <varname>n</varname>th triangular number.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/TriangularNumbers.html">Planetmath</ulink> for
more information.
+ <ulink url="http://planetmath.org/TriangularNumbers">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7074,7 +7130,7 @@ do (
<varname>n</varname> can be any real number.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/Choose.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/Choose">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7106,7 +7162,7 @@ do (
<para>Integration of f by Composite Simpson's Rule on the interval [a,b] with n subintervals with
error of max(f'''')*h^4*(b-a)/180, note that n should be even.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/SimpsonsRule.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/SimpsonsRule">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7118,7 +7174,7 @@ do (
<para>Integration of f by Composite Simpson's Rule on the interval [a,b] with the number of steps
calculated by the fourth derivative bound and the desired tolerance.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/SimpsonsRule.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/SimpsonsRule">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7128,6 +7184,10 @@ do (
<listitem>
<synopsis>Derivative (f,x0)</synopsis>
<para>Attempt to calculate derivative by trying first symbolically and then numerically.</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
+ </para>
</listitem>
</varlistentry>
@@ -7248,6 +7308,10 @@ or <varname>b</varname> can be <constant>null</constant>.</para>
<synopsis>NumericalDerivative (f,x0)</synopsis>
<para>Aliases: <function>NDerivative</function></para>
<para>Attempt to calculate numerical derivative.</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
+ </para>
</listitem>
</varlistentry>
@@ -7587,7 +7651,7 @@ and has period <userinput>b-a</userinput>.</para>
<term><anchor id="gel-function-DirichletKernel"/>DirichletKernel</term>
<listitem>
<synopsis>DirichletKernel (n,t)</synopsis>
- <para>Dirichlet kernel of order n.</para>
+ <para>Dirichlet kernel of order <varname>n</varname>.</para>
</listitem>
</varlistentry>
@@ -7607,7 +7671,8 @@ and has period <userinput>b-a</userinput>.</para>
<para>The error function, 2/sqrt(pi) * int_0^x e^(-t^2) dt.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/ErrorFunction.html">Planetmath</ulink> for more
information.
+ <ulink url="https://en.wikipedia.org/wiki/Error_function">Wikipedia</ulink> or
+ <ulink url="http://planetmath.org/ErrorFunction">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7620,7 +7685,7 @@ and has period <userinput>b-a</userinput>.</para>
<varname>t</varname></para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/FejerKernel.html">Planetmath</ulink> for more
information.
+ <ulink url="http://planetmath.org/FejerKernel">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7633,7 +7698,7 @@ and has period <userinput>b-a</userinput>.</para>
<para>The Gamma function. Currently only implemented for real values.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/GammaFunction.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/GammaFunction">Planetmath</ulink> or
<ulink url="http://en.wikipedia.org/wiki/Gamma_function">Wikipedia</ulink> for more information.
</para>
</listitem>
@@ -7702,7 +7767,7 @@ and has period <userinput>b-a</userinput>.</para>
<para>Moebius mapping of the disk to itself mapping a to 0.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html">Planetmath</ulink> for
more information.
+ <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7714,7 +7779,7 @@ and has period <userinput>b-a</userinput>.</para>
<para>Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity
respectively.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html">Planetmath</ulink> for
more information.
+ <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7726,7 +7791,7 @@ and has period <userinput>b-a</userinput>.</para>
<para>Moebius mapping using the cross ratio taking infinity to infinity and z2,z3 to 1 and 0
respectively.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html">Planetmath</ulink> for
more information.
+ <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7738,7 +7803,7 @@ and has period <userinput>b-a</userinput>.</para>
<para>Moebius mapping using the cross ratio taking infinity to 1 and z3,z4 to 0 and infinity
respectively.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html">Planetmath</ulink> for
more information.
+ <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7750,7 +7815,7 @@ and has period <userinput>b-a</userinput>.</para>
<para>Moebius mapping using the cross ratio taking infinity to 0 and z2,z4 to 1 and infinity
respectively.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html">Planetmath</ulink> for
more information.
+ <ulink url="http://planetmath.org/MobiusTransformation">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -7779,7 +7844,7 @@ and has period <userinput>b-a</userinput>.</para>
<para>The Riemann zeta function. Currently only implemented for real values.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/RiemannZetaFunction.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/RiemannZetaFunction">Planetmath</ulink> or
<ulink url="http://en.wikipedia.org/wiki/Riemann_zeta_function">Wikipedia</ulink> for more
information.
</para>
</listitem>
@@ -7861,7 +7926,7 @@ and has period <userinput>b-a</userinput>.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/CubicFormula.html">Planetmath</ulink>,
+ <ulink url="http://planetmath.org/CubicFormula">Planetmath</ulink>,
<ulink url="http://mathworld.wolfram.com/CubicFormula.html">Mathworld</ulink>, or
<ulink url="http://en.wikipedia.org/wiki/Cubic_equation">Wikipedia</ulink> for more information.
</para>
@@ -7891,7 +7956,7 @@ and has period <userinput>b-a</userinput>.</para>
</para>
<para>
See
- <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html">Mathworld</ulink>, or
+ <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html">Mathworld</ulink> or
<ulink url="http://en.wikipedia.org/wiki/Eulers_method">Wikipedia</ulink> for more information.
</para>
</listitem>
@@ -7947,7 +8012,7 @@ and has period <userinput>b-a</userinput>.</para>
</para>
<para>
See
- <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html">Mathworld</ulink>, or
+ <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html">Mathworld</ulink> or
<ulink url="http://en.wikipedia.org/wiki/Eulers_method">Wikipedia</ulink> for more information.
</para>
<para>Version 1.0.10 onwards.</para>
@@ -8089,7 +8154,7 @@ and has period <userinput>b-a</userinput>.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/QuadraticFormula.html">Planetmath</ulink> or
+ <ulink url="http://planetmath.org/QuadraticFormula">Planetmath</ulink> or
<ulink url="http://mathworld.wolfram.com/QuadraticFormula.html">Mathworld</ulink> for more
information.
</para>
</listitem>
@@ -8109,7 +8174,7 @@ and has period <userinput>b-a</userinput>.</para>
</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/QuarticFormula.html">Planetmath</ulink>,
+ <ulink url="http://planetmath.org/QuarticFormula">Planetmath</ulink>,
<ulink url="http://mathworld.wolfram.com/QuarticEquation.html">Mathworld</ulink>, or
<ulink url="http://en.wikipedia.org/wiki/Quartic_equation">Wikipedia</ulink> for more information.
</para>
@@ -8136,7 +8201,7 @@ and has period <userinput>b-a</userinput>.</para>
</para>
<para>
See
- <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html">Mathworld</ulink>, or
+ <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html">Mathworld</ulink> or
<ulink url="http://en.wikipedia.org/wiki/Runge-Kutta_methods">Wikipedia</ulink> for more
information.
</para>
</listitem>
@@ -8189,7 +8254,7 @@ and has period <userinput>b-a</userinput>.</para>
</para>
<para>
See
- <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html">Mathworld</ulink>, or
+ <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html">Mathworld</ulink> or
<ulink url="http://en.wikipedia.org/wiki/Runge-Kutta_methods">Wikipedia</ulink> for more
information.
</para>
<para>Version 1.0.10 onwards.</para>
@@ -8341,7 +8406,7 @@ and has period <userinput>b-a</userinput>.</para>
degree than <varname>q</varname>.</para>
<para>
See
- <ulink url="http://planetmath.org/encyclopedia/PolynomialLongDivision.html">Planetmath</ulink>
for more information.
+ <ulink url="http://planetmath.org/PolynomialLongDivision">Planetmath</ulink> for more information.
</para>
</listitem>
</varlistentry>
@@ -8577,6 +8642,10 @@ and has period <userinput>b-a</userinput>.</para>
= (`(x)=(7*(2*x)))
</screen>
</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
+ </para>
</listitem>
</varlistentry>
@@ -8587,6 +8656,10 @@ and has period <userinput>b-a</userinput>.</para>
<para>Attempt to symbolically differentiate the function f, where f is a function of one variable,
returns <constant>null</constant> if unsuccessful but is silent.
(See <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>)
</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
+ </para>
</listitem>
</varlistentry>
@@ -8597,6 +8670,10 @@ and has period <userinput>b-a</userinput>.</para>
<para>Attempt to symbolically differentiate a function n times.
(See <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>)
</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
+ </para>
</listitem>
</varlistentry>
@@ -8607,6 +8684,10 @@ and has period <userinput>b-a</userinput>.</para>
<para>Attempt to symbolically differentiate a function n times quietly and return
<constant>null</constant> on failure
(See <link
linkend="gel-function-SymbolicNthDerivative"><function>SymbolicNthDerivative</function></link>)
</para>
+ <para>
+ See
+ <ulink url="https://en.wikipedia.org/wiki/Derivative">Wikipedia</ulink> for more information.
+ </para>
</listitem>
</varlistentry>
diff --git a/src/calc.h b/src/calc.h
index 0e54fc5..eaa225f 100644
--- a/src/calc.h
+++ b/src/calc.h
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2015 Jiri (George) Lebl
+ * Copyright (C) 1997-2016 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -29,7 +29,7 @@
#include "structs.h"
-#define GENIUS_COPYRIGHT_STRING N_("Copyright (C) 1997-2015 Jiří (George) Lebl")
+#define GENIUS_COPYRIGHT_STRING N_("Copyright (C) 1997-2016 Jiří (George) Lebl")
typedef enum {
GEL_NO_ERROR = 0,
diff --git a/src/funclib.c b/src/funclib.c
index abf1c18..9f855ee 100644
--- a/src/funclib.c
+++ b/src/funclib.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2015 Jiri (George) Lebl
+ * Copyright (C) 1997-2016 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -1349,6 +1349,8 @@ StripZeroColumns_op (GelCtx *ctx, GelETree * * a, gboolean *exception)
if (cnt == w) {
g_slist_free (cols);
return gel_copynode (a[0]);
+ } else if (cnt == 0) {
+ return gel_makenum_null ();
}
nm = gel_matrix_new ();
diff --git a/src/geniustests.txt b/src/geniustests.txt
index c968e71..f69578b 100644
--- a/src/geniustests.txt
+++ b/src/geniustests.txt
@@ -1225,6 +1225,8 @@ Subfactorial(0) 1
Subfactorial(-1) Subfactorial(-1)
Factorial([0,1,2,3,4,5,6]) [1,1,2,6,24,120,720]
DoubleFactorial([0,1,2,3,4,5,6]) [1,1,2,3,8,15,48]
+StripZeroColumns(zeros(4,4))+0 ((null)+0)
+Image(zeros(4,4))+0 ((null)+0)
load "nullspacetest.gel" true
load "longtest.gel" true
load "testprec.gel" true
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]