[genius] Fri Jul 08 23:46:02 2016 Jiri (George) Lebl <jirka 5z com>



commit 4d497cedd6076a839823a19b0c40b2757305ef27
Author: Jiri (George) Lebl <jiri lebl gmail com>
Date:   Fri Jul 8 23:47:47 2016 +0200

    Fri Jul 08 23:46:02 2016  Jiri (George) Lebl <jirka 5z com>
    
        * src/funclib.c: fix StripZeroColumns when a zero matrix is passed
          in.
    
        * help/C/genius.xml: fix Planetmath links (thanks to Anders Jonsson).
          Also add a couple more wikipedia links and a couple of details in
          various places.
    
        * src/calc.h: raise year to 2016

 ChangeLog           |   11 ++
 help/C/genius.xml   |  327 ++++++++++++++++++++++++++++++++-------------------
 src/calc.h          |    4 +-
 src/funclib.c       |    4 +-
 src/geniustests.txt |    2 +
 5 files changed, 222 insertions(+), 126 deletions(-)
---
diff --git a/ChangeLog b/ChangeLog
index d248ee9..43c871a 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,14 @@
+Fri Jul 08 23:46:02 2016  Jiri (George) Lebl <jirka 5z com>
+
+       * src/funclib.c: fix StripZeroColumns when a zero matrix is passed
+         in.
+
+       * help/C/genius.xml: fix Planetmath links (thanks to Anders Jonsson).
+         Also add a couple more wikipedia links and a couple of details in
+         various places.
+
+       * src/calc.h: raise year to 2016
+
 Thu Jun 09 16:56:00 2016  Jiri (George) Lebl <jirka 5z com>
 
        * help/C/genius.xml, lib/combinatorics/factorial.gel:
diff --git a/help/C/genius.xml b/help/C/genius.xml
index 4535c29..17de690 100644
--- a/help/C/genius.xml
+++ b/help/C/genius.xml
@@ -4,7 +4,7 @@
   <!ENTITY app "<application>Genius Mathematics Tool</application>">
   <!ENTITY appname "Genius">
   <!ENTITY appversion "1.0.21">
-  <!ENTITY date "January 2016">
+  <!ENTITY date "July 2016">
 
   <!ENTITY legal SYSTEM "legal.xml">
 
@@ -3815,7 +3815,7 @@ vectorfield plot.  (See <link linkend="gel-function-VectorfieldPlot"><function>V
          </para>
           <para>
            See
-           <ulink url="http://en.wikipedia.org/wiki/Catalan%27s_constant";>Wikipedia</ulink>, or
+           <ulink url="http://en.wikipedia.org/wiki/Catalan%27s_constant";>Wikipedia</ulink> or
            <ulink url="http://mathworld.wolfram.com/CatalansConstant.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -3833,7 +3833,7 @@ vectorfield plot.  (See <link linkend="gel-function-VectorfieldPlot"><function>V
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/MascheroniConstant.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/MascheroniConstant";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/Euler-MascheroniConstant.html";>Mathworld</ulink> for 
more information.
          </para>
          </listitem>
@@ -3847,7 +3847,7 @@ vectorfield plot.  (See <link linkend="gel-function-VectorfieldPlot"><function>V
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Golden_ratio";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/GoldenRatio.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/GoldenRatio";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/GoldenRatio.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -3881,7 +3881,7 @@ vectorfield plot.  (See <link linkend="gel-function-VectorfieldPlot"><function>V
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/E_(mathematical_constant)">Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/E.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/E";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/e.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -3898,7 +3898,7 @@ vectorfield plot.  (See <link linkend="gel-function-VectorfieldPlot"><function>V
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Pi";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/Pi.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/Pi";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/Pi.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -3924,8 +3924,8 @@ vectorfield plot.  (See <link linkend="gel-function-VectorfieldPlot"><function>V
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Absolute_value";>Wikipedia</ulink>,
-           <ulink url="http://planetmath.org/encyclopedia/AbsoluteValue.html";>Planetmath (absolute 
value)</ulink>,
-           <ulink url="http://planetmath.org/encyclopedia/ModulusOfComplexNumber.html";>Planetmath 
(modulus)</ulink>,
+           <ulink url="http://planetmath.org/AbsoluteValue";>Planetmath (absolute value)</ulink>,
+           <ulink url="http://planetmath.org/ModulusOfComplexNumber";>Planetmath (modulus)</ulink>,
            <ulink url="http://mathworld.wolfram.com/AbsoluteValue.html";>Mathworld (absolute value)</ulink> or
            <ulink url="http://mathworld.wolfram.com/ComplexModulus.html";>Mathworld (complex modulus)</ulink>
 for more information.
@@ -4155,7 +4155,7 @@ value then <function>Sign</function> returns the direction or 0.
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Exponential_function";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/LogarithmFunction.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/LogarithmFunction";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/ExponentialFunction.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -4186,7 +4186,7 @@ value then <function>Sign</function> returns the direction or 0.
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Natural_logarithm";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/LogarithmFunction.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/LogarithmFunction";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/NaturalLogarithm.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -4296,7 +4296,8 @@ number is specified) of the given size returned.  For example,
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/SquareRoot.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/Square_root";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/SquareRoot";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -4457,7 +4458,8 @@ number is specified) of the given size returned.  For example,
           <para>Calculates the cosine function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html";>Planetmath</ulink> 
for more information.
+           <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/DefinitionsInTrigonometry";>Planetmath</ulink> for more 
information.
          </para>
          </listitem>
         </varlistentry>
@@ -4469,7 +4471,8 @@ number is specified) of the given size returned.  For example,
           <para>Calculates the hyperbolic cosine function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html";>Planetmath</ulink> for 
more information.
+           <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HyperbolicFunctions";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -4481,7 +4484,8 @@ number is specified) of the given size returned.  For example,
           <para>The cotangent function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html";>Planetmath</ulink> 
for more information.
+           <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/DefinitionsInTrigonometry";>Planetmath</ulink> for more 
information.
          </para>
          </listitem>
         </varlistentry>
@@ -4493,7 +4497,8 @@ number is specified) of the given size returned.  For example,
           <para>The hyperbolic cotangent function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html";>Planetmath</ulink> for 
more information.
+           <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HyperbolicFunctions";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -4505,7 +4510,8 @@ number is specified) of the given size returned.  For example,
           <para>The cosecant function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html";>Planetmath</ulink> 
for more information.
+           <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/DefinitionsInTrigonometry";>Planetmath</ulink> for more 
information.
          </para>
          </listitem>
         </varlistentry>
@@ -4517,7 +4523,8 @@ number is specified) of the given size returned.  For example,
           <para>The hyperbolic cosecant function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html";>Planetmath</ulink> for 
more information.
+           <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HyperbolicFunctions";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -4529,7 +4536,8 @@ number is specified) of the given size returned.  For example,
           <para>The secant function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html";>Planetmath</ulink> 
for more information.
+           <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/DefinitionsInTrigonometry";>Planetmath</ulink> for more 
information.
          </para>
          </listitem>
         </varlistentry>
@@ -4541,7 +4549,8 @@ number is specified) of the given size returned.  For example,
           <para>The hyperbolic secant function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html";>Planetmath</ulink> for 
more information.
+           <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HyperbolicFunctions";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -4553,7 +4562,8 @@ number is specified) of the given size returned.  For example,
           <para>Calculates the sine function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html";>Planetmath</ulink> 
for more information.
+           <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/DefinitionsInTrigonometry";>Planetmath</ulink> for more 
information.
          </para>
          </listitem>
         </varlistentry>
@@ -4565,7 +4575,8 @@ number is specified) of the given size returned.  For example,
           <para>Calculates the hyperbolic sine function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html";>Planetmath</ulink> for 
more information.
+           <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HyperbolicFunctions";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -4577,7 +4588,8 @@ number is specified) of the given size returned.  For example,
           <para>Calculates the tan function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html";>Planetmath</ulink> 
for more information.
+           <ulink url="http://en.wikipedia.org/wiki/Trigonometric_functions";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/DefinitionsInTrigonometry";>Planetmath</ulink> for more 
information.
          </para>
          </listitem>
         </varlistentry>
@@ -4589,7 +4601,8 @@ number is specified) of the given size returned.  For example,
           <para>The hyperbolic tangent function.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HyperbolicFunctions.html";>Planetmath</ulink> for 
more information.
+           <ulink url="https://en.wikipedia.org/wiki/Hyperbolic_function";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HyperbolicFunctions";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -4610,7 +4623,8 @@ number is specified) of the given size returned.  For example,
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/RelativelyPrime.html";>Planetmath</ulink> or
+           <ulink url="https://en.wikipedia.org/wiki/Coprime_integers";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/RelativelyPrime";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/RelativelyPrime.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -4641,7 +4655,7 @@ number is specified) of the given size returned.  For example,
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Chinese_remainder_theorem";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/ChineseRemainderTheorem.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/ChineseRemainderTheorem";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/ChineseRemainderTheorem.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -4682,8 +4696,8 @@ number is specified) of the given size returned.  For example,
            is a prime, using the Silver-Pohlig-Hellman algorithm.</para>
           <para>
            See
-           <ulink url="http://en.wikipedia.org/wiki/Discrete_logarithm";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/DiscreteLogarithm.html";>Planetmath</ulink> or
+           <ulink url="http://en.wikipedia.org/wiki/Discrete_logarithm";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/DiscreteLogarithm";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/DiscreteLogarithm.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -4708,8 +4722,8 @@ number is specified) of the given size returned.  For example,
          </para>
           <para>
            See
-           <ulink url="http://en.wikipedia.org/wiki/Euler_phi";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/EulerPhifunction.html";>Planetmath</ulink> or
+           <ulink url="http://en.wikipedia.org/wiki/Euler_phi";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/EulerPhifunction";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/TotientFunction.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -4860,7 +4874,7 @@ precalculated and returned in the second column.</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Mersenne_prime";>Wikipedia</ulink>,
-           <ulink url="http://planetmath.org/encyclopedia/MersenneNumbers.html";>Planetmath</ulink>,
+           <ulink url="http://planetmath.org/MersenneNumbers";>Planetmath</ulink>,
            <ulink url="http://mathworld.wolfram.com/MersennePrime.html";>Mathworld</ulink> or 
            <ulink url="http://www.mersenne.org/";>GIMPS</ulink>
  for more information.
@@ -4935,7 +4949,7 @@ precalculated and returned in the second column.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/PrimeNumber.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/PrimeNumber";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/PrimeNumber.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -5012,7 +5026,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>Calculate the Legendre symbol (a/p).</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/LegendreSymbol.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/LegendreSymbol";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/LegendreSymbol.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5030,8 +5044,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
           </para>
           <para>
            See
-           <ulink url="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/LucasLhemer.html";>Planetmath</ulink> or
+           <ulink url="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/LucasLhemer";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/Lucas-LehmerTest.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5044,8 +5058,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>Returns the <varname>n</varname>th Lucas number.</para>
           <para>
            See
-           <ulink url="http://en.wikipedia.org/wiki/Lucas_number";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/LucasNumbers.html";>Planetmath</ulink> or
+           <ulink url="http://en.wikipedia.org/wiki/Lucas_number";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/LucasNumbers";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/LucasNumber.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -5076,7 +5090,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Mersenne_prime";>Wikipedia</ulink>,
-           <ulink url="http://planetmath.org/encyclopedia/MersenneNumbers.html";>Planetmath</ulink>,
+           <ulink url="http://planetmath.org/MersenneNumbers";>Planetmath</ulink>,
            <ulink url="http://mathworld.wolfram.com/MersennePrime.html";>Mathworld</ulink> or 
            <ulink url="http://www.mersenne.org/";>GIMPS</ulink>
  for more information.
@@ -5100,7 +5114,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/MillerRabinPrimeTest.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/MillerRabinPrimeTest";>Planetmath</ulink> or
            <ulink 
url="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5117,8 +5131,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
          </para>
           <para>
            See
-           <ulink url="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/MillerRabinPrimeTest.html";>Planetmath</ulink> or
+           <ulink url="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/MillerRabinPrimeTest";>Planetmath</ulink>, or
            <ulink 
url="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5148,7 +5162,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/MoebiusFunction.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/MoebiusFunction";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/MoebiusFunction.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5173,7 +5187,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/PrimeNumber.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/PrimeNumber";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/PrimeNumber.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -5186,7 +5200,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>Returns the p-adic valuation (number of trailing zeros in base <varname>p</varname>).</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/PAdicValuation.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/P-adic_order";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/PAdicValuation";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -5213,7 +5228,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>Return the <varname>n</varname>th prime (up to a limit).</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/PrimeNumber.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/PrimeNumber";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/PrimeNumber.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -5226,6 +5241,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>Return all prime factors of a number as a vector.</para>
           <para>
            See
+           <ulink url="https://en.wikipedia.org/wiki/Prime_factor";>Wikipedia</ulink> or
            <ulink url="http://mathworld.wolfram.com/PrimeFactor.html";>Mathworld</ulink> for more information.
           </para>
          </listitem>
@@ -5239,7 +5255,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
                <userinput>b^(n-1) == 1  mod n</userinput></para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/Pseudoprime.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/Pseudoprime";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/Pseudoprime.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -5252,7 +5268,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>Removes all instances of the factor <varname>m</varname> from the number 
<varname>n</varname>.  That is divides by the largest power of <varname>m</varname>, that divides 
<varname>n</varname>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/Divisibility.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/Divisibility";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/Factor.html";>Mathworld</ulink> for more information.
          </para>
          </listitem>
@@ -5273,7 +5289,7 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>Find square root of <varname>n</varname> modulo <varname>p</varname> (where 
<varname>p</varname> is a prime).  Null is returned if not a quadratic residue.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/QuadraticResidue.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/QuadraticResidue";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/QuadraticResidue.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5286,7 +5302,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
           <para>Run the strong pseudoprime test base <varname>b</varname> on <varname>n</varname>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/StrongPseudoprime.html";>Planetmath</ulink> or
+           <ulink url="https://en.wikipedia.org/wiki/Strong_pseudoprime";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/StrongPseudoprime";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/StrongPseudoprime.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5305,7 +5322,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/GreatestCommonDivisor.html";>Planetmath</ulink> or
+           <ulink url="https://en.wikipedia.org/wiki/Greatest_common_divisor";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/GreatestCommonDivisor";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/GreatestCommonDivisor.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5324,7 +5342,8 @@ If <varname>q</varname> is not prime results are bogus.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/LeastCommonMultiple.html";>Planetmath</ulink> or
+           <ulink url="https://en.wikipedia.org/wiki/Least_common_multiple";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/LeastCommonMultiple";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/LeastCommonMultiple.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -5422,10 +5441,11 @@ If <varname>q</varname> is not prime results are bogus.</para>
          <listitem>
           <synopsis>DotProduct (u,v)</synopsis>
          <para>Get the dot product of two vectors.  The vectors must be of the
-same size.  No conjugates are taken so this is a bilinear form even if working over the complex 
numbers.</para>
+                 same size.  No conjugates are taken so this is a bilinear form even if working over the 
complex numbers; This is the bilinear scalar product not the sesquilinear scalar product.  See <link 
linkend="gel-function-HermitianProduct">HermitianProduct</link> for the standard sesquilinear inner 
product.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/DotProduct.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/Dot_product";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/DotProduct";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -5451,6 +5471,7 @@ same size.  No conjugates are taken so this is a bilinear form even if working o
           <para>Get the Hermitian product of two vectors.  The vectors must be of the same size.  This is a 
sesquilinear form using the identity matrix.</para>
           <para>
            See
+           <ulink url="https://en.wikipedia.org/wiki/Sesquilinear_form";>Wikipedia</ulink> or
            <ulink url="http://mathworld.wolfram.com/HermitianInnerProduct.html";>Mathworld</ulink> for more 
information.
           </para>
          </listitem>
@@ -5464,7 +5485,8 @@ same size.  No conjugates are taken so this is a bilinear form even if working o
          <para>Return an identity matrix of a given size, that is <varname>n</varname> by 
<varname>n</varname>.  If <varname>n</varname> is zero, returns <constant>null</constant>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/IdentityMatrix.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/Identity_matrix";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/IdentityMatrix";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -5487,7 +5509,7 @@ same size.  No conjugates are taken so this is a bilinear form even if working o
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Diagonal_matrix";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/DiagonalMatrix.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/DiagonalMatrix";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -5637,7 +5659,7 @@ functions make this check.  Values can be any number including complex numbers.<
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Diagonal_matrix";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/DiagonalMatrix.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/DiagonalMatrix";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -5876,7 +5898,7 @@ number of columns times the number of rows.</para>
 superdiagonal being all ones.  It is the Jordan block matrix of one zero eigenvalue.</para>
           <para>
            See
-           <ulink 
url="http://planetmath.org/encyclopedia/JordanCanonicalFormTheorem.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/JordanCanonicalFormTheorem";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/JordanBlock.html";>Mathworld</ulink> for more information 
on Jordan Canonical Form.
           </para>
          </listitem>
@@ -5911,7 +5933,8 @@ See also <link linkend="gel-function-CharacteristicPolynomialFunction">Character
 </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/CharacteristicEquation.html";>Planetmath</ulink> 
for more information.
+           <ulink url="https://en.wikipedia.org/wiki/Characteristic_polynomial";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/CharacteristicEquation";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -5927,7 +5950,8 @@ See also <link linkend="gel-function-CharacteristicPolynomial">CharacteristicPol
 </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/CharacteristicEquation.html";>Planetmath</ulink> 
for more information.
+           <ulink url="https://en.wikipedia.org/wiki/Characteristic_polynomial";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/CharacteristicEquation";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -5940,6 +5964,10 @@ See also <link linkend="gel-function-CharacteristicPolynomial">CharacteristicPol
 return a matrix whose columns are the basis for the column space of
 <varname>M</varname>.  That is the space spanned by the columns of
 <varname>M</varname>.</para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Row_and_column_spaces";>Wikipedia</ulink> for more 
information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -5969,7 +5997,8 @@ return a matrix whose columns are the basis for the column space of
          same as the <userinput>'</userinput> operator.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/ConjugateTranspose.html";>Planetmath</ulink> for 
more information.
+           <ulink url="https://en.wikipedia.org/wiki/Conjugate_transpose";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/ConjugateTranspose";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -5998,6 +6027,10 @@ result as a vector and not added together.</para>
           <synopsis>CrossProduct (v,w)</synopsis>
          <para>CrossProduct of two vectors in R<superscript>3</superscript> as
                  a column vector.</para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Cross_product";>Wikipedia</ulink> for more information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -6014,6 +6047,10 @@ result as a vector and not added together.</para>
          <listitem>
           <synopsis>DirectSum (M,N...)</synopsis>
           <para>Direct sum of matrices.</para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Matrix_addition#directsum";>Wikipedia</ulink> for more 
information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -6022,6 +6059,10 @@ result as a vector and not added together.</para>
          <listitem>
           <synopsis>DirectSumMatrixVector (v)</synopsis>
           <para>Direct sum of a vector of matrices.</para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Matrix_addition#directsum";>Wikipedia</ulink> for more 
information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -6037,8 +6078,8 @@ result as a vector and not added together.</para>
          </para>
           <para>
            See
-           <ulink url="http://en.wikipedia.org/wiki/Eigenvalue";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/Eigenvalue.html";>Planetmath</ulink> or
+           <ulink url="http://en.wikipedia.org/wiki/Eigenvalue";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/Eigenvalue";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/Eigenvalue.html";>Mathworld</ulink> for more information.
           </para>
          </listitem>
@@ -6056,8 +6097,8 @@ the eigenvalues and their algebraic multiplicities.
          </para>
           <para>
            See
-           <ulink url="http://en.wikipedia.org/wiki/Eigenvector";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/Eigenvector.html";>Planetmath</ulink> or
+           <ulink url="http://en.wikipedia.org/wiki/Eigenvector";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/Eigenvector";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/Eigenvector.html";>Mathworld</ulink> for more information.
           </para>
          </listitem>
@@ -6075,7 +6116,8 @@ a sesquilinear form.  The vectors will be made orthonormal with respect to
 <varname>B</varname>.</para>
           <para>
            See
-           <ulink 
url="http://planetmath.org/encyclopedia/GramSchmidtOrthogonalization.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/GramSchmidtOrthogonalization";>Planetmath</ulink> for more 
information.
           </para>
          </listitem>
         </varlistentry>
@@ -6084,7 +6126,13 @@ a sesquilinear form.  The vectors will be made orthonormal with respect to
          <term><anchor id="gel-function-HankelMatrix"/>HankelMatrix</term>
          <listitem>
           <synopsis>HankelMatrix (c,r)</synopsis>
-          <para>Hankel matrix.</para>
+         <para>Hankel matrix, a matrix whose skew-diagonals are constant.  <varname>c</varname> is the first 
row and <varname>r</varname> is the
+                 last column.  It is assumed that both arguments are vectors and the last element of 
<varname>c</varname> is the same
+                 as the first element of <varname>r</varname>.</para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Hankel_matrix";>Wikipedia</ulink> for more information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -6095,7 +6143,8 @@ a sesquilinear form.  The vectors will be made orthonormal with respect to
           <para>Hilbert matrix of order <varname>n</varname>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HilbertMatrix.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/Hilbert_matrix";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HilbertMatrix";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6105,6 +6154,10 @@ a sesquilinear form.  The vectors will be made orthonormal with respect to
          <listitem>
           <synopsis>Image (T)</synopsis>
           <para>Get the image (columnspace) of a linear transform.</para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Row_and_column_spaces";>Wikipedia</ulink> for more 
information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -6131,7 +6184,8 @@ a sesquilinear form.  The vectors will be made orthonormal with respect to
           <para>Inverse Hilbert matrix of order <varname>n</varname>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HilbertMatrix.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/Hilbert_matrix";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HilbertMatrix";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6143,7 +6197,8 @@ a sesquilinear form.  The vectors will be made orthonormal with respect to
           <para>Is a matrix Hermitian.  That is, is it equal to its conjugate transpose.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/HermitianMatrix.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/Hermitian_matrix";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/HermitianMatrix";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6180,7 +6235,7 @@ a sesquilinear form.  The vectors will be made orthonormal with respect to
          does <userinput>M*M' == M'*M</userinput>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/NormalMatrix.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/NormalMatrix";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/NormalMatrix.html";>Mathworld</ulink> for more 
information.
           </para>
          </listitem>
@@ -6207,7 +6262,8 @@ determinant.
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/PositiveDefinite.html";>Planetmath</ulink> or
+           <ulink url="https://en.wikipedia.org/wiki/Positive-definite_matrix";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/PositiveDefinite";>Planetmath</ulink>, or
            <ulink url="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html";>Mathworld</ulink> for more 
information.
           </para>
          </listitem>
@@ -6234,7 +6290,7 @@ determinant.
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/PositiveSemidefinite.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/PositiveSemidefinite";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html";>Mathworld</ulink> for 
more information.
           </para>
          </listitem>
@@ -6247,7 +6303,7 @@ determinant.
           <para>Is a matrix skew-Hermitian.  That is, is the conjugate transpose equal to negative of the 
matrix.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/SkewHermitianMatrix.html";>Planetmath</ulink> for 
more information.
+           <ulink url="http://planetmath.org/SkewHermitianMatrix";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -6261,7 +6317,7 @@ determinant.
          equal the identity.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/UnitaryTransformation.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/UnitaryTransformation";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/UnitaryMatrix.html";>Mathworld</ulink> for more 
information.
           </para>
          </listitem>
@@ -6277,7 +6333,7 @@ determinant.
          </para>
           <para>
            See
-           <ulink 
url="http://planetmath.org/encyclopedia/JordanCanonicalFormTheorem.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/JordanCanonicalFormTheorem";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/JordanBlock.html";>Mathworld</ulink> for more information.
           </para>
          </listitem>
@@ -6306,7 +6362,7 @@ determinant.
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Kronecker_product";>Wikipedia</ulink>, 
-           <ulink url="http://planetmath.org/encyclopedia/KroneckerProduct.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/KroneckerProduct";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/KroneckerProduct.html";>Mathworld</ulink> for more 
information.
           </para>
          <para>Version 1.0.18 onwards.</para>
@@ -6349,7 +6405,7 @@ determinant.
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/LU_decomposition";>Wikipedia</ulink>,
-           <ulink url="http://planetmath.org/encyclopedia/LUDecomposition.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/LUDecomposition";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/LUDecomposition.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -6362,7 +6418,7 @@ determinant.
           <para>Get the <varname>i</varname>-<varname>j</varname> minor of a matrix.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/Minor.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/Minor";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -6394,7 +6450,7 @@ determinant.
          <varname>T</varname>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/Nullspace.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/Nullspace";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6408,7 +6464,7 @@ determinant.
 the nullspace; the dimension of the kernel of <varname>M</varname>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/Nullity.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/Nullity";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6463,7 +6519,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/QR_decomposition";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/QRDecomposition.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/QRDecomposition";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/QRDecomposition.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -6476,7 +6532,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
           <para>Return the Rayleigh quotient (also called the Rayleigh-Ritz quotient or ratio) of a matrix 
and a vector.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/RayleighQuotient.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/RayleighQuotient";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6497,7 +6553,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
                </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/RayleighQuotient.html";>Planetmath</ulink> for more 
information on Rayleigh quotient.
+           <ulink url="http://planetmath.org/RayleighQuotient";>Planetmath</ulink> for more information on 
Rayleigh quotient.
           </para>
          </listitem>
         </varlistentry>
@@ -6510,7 +6566,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
           <para>Get the rank of a matrix.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/SylvestersLaw.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/SylvestersLaw";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6623,7 +6679,7 @@ Hermitian matrix (if the first element is real of course).</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Toeplitz_matrix";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/ToeplitzMatrix.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/ToeplitzMatrix";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6637,7 +6693,7 @@ Hermitian matrix (if the first element is real of course).</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Trace_(linear_algebra)">Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/Trace.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/Trace";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6651,7 +6707,7 @@ Hermitian matrix (if the first element is real of course).</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Transpose";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/Transpose.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/Transpose";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6732,7 +6788,7 @@ function of two arguments or it can be a matrix giving a sesquilinear form.
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Determinant";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/Determinant2.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/Determinant2";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6748,7 +6804,7 @@ divided to make all pivots 1.</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Row_echelon_form";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/RowEchelonForm.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/RowEchelonForm";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6762,7 +6818,7 @@ divided to make all pivots 1.</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Reduced_row_echelon_form";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/ReducedRowEchelonForm.html";>Planetmath</ulink> for 
more information.
+           <ulink url="http://planetmath.org/ReducedRowEchelonForm";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6780,7 +6836,7 @@ divided to make all pivots 1.</para>
           <para>Get <varname>n</varname>th Catalan number.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/CatalanNumbers.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/CatalanNumbers";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6802,7 +6858,7 @@ divided to make all pivots 1.</para>
           <para>Double factorial: <userinput>n(n-2)(n-4)...</userinput></para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/DoubleFactorial.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/DoubleFactorial";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6814,7 +6870,7 @@ divided to make all pivots 1.</para>
           <para>Factorial: <userinput>n(n-1)(n-2)...</userinput></para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/Factorial.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/Factorial";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6826,7 +6882,7 @@ divided to make all pivots 1.</para>
           <para>Falling factorial: <userinput>(n)_k = n(n-1)...(n-(k-1))</userinput></para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/FallingFactorial.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/FallingFactorial";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -6846,7 +6902,7 @@ divided to make all pivots 1.</para>
           <para>
            See
            <ulink url="http://en.wikipedia.org/wiki/Fibonacci_number";>Wikipedia</ulink> or
-           <ulink url="http://planetmath.org/encyclopedia/FibonacciSequence.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/FibonacciSequence";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/FibonacciNumber.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -6943,9 +6999,9 @@ divided to make all pivots 1.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/MultinomialTheorem.html";>Planetmath</ulink>,
-           <ulink url="http://mathworld.wolfram.com/MultinomialCoefficient.html";>Mathworld</ulink>, or
-           <ulink url="http://en.wikipedia.org/wiki/Multinomial_theorem";>Wikipedia</ulink> for more 
information.
+           <ulink url="http://en.wikipedia.org/wiki/Multinomial_theorem";>Wikipedia</ulink>,
+           <ulink url="http://planetmath.org/MultinomialTheorem";>Planetmath</ulink>, or
+           <ulink url="http://mathworld.wolfram.com/MultinomialCoefficient.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
         </varlistentry>
@@ -6986,7 +7042,7 @@ do (
          iterations.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/PascalsTriangle.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/PascalsTriangle";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7012,7 +7068,7 @@ do (
           <para>(Pochhammer) Rising factorial: (n)_k = n(n+1)...(n+(k-1)).</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/RisingFactorial.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/RisingFactorial";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7025,7 +7081,7 @@ do (
           <para>Stirling number of the first kind.</para>
           <para>
            See
-           <ulink 
url="http://planetmath.org/encyclopedia/StirlingNumbersOfTheFirstKind.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/StirlingNumbersOfTheFirstKind";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html";>Mathworld</ulink> for 
more information.
          </para>
          </listitem>
@@ -7039,7 +7095,7 @@ do (
           <para>Stirling number of the second kind.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/StirlingNumbersSecondKind.html";>Planetmath</ulink> 
or
+           <ulink url="http://planetmath.org/StirlingNumbersSecondKind";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html";>Mathworld</ulink> 
for more information.
          </para>
          </listitem>
@@ -7060,7 +7116,7 @@ do (
           <para>Calculate the <varname>n</varname>th triangular number.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/TriangularNumbers.html";>Planetmath</ulink> for 
more information.
+           <ulink url="http://planetmath.org/TriangularNumbers";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7074,7 +7130,7 @@ do (
                <varname>n</varname> can be any real number.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/Choose.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/Choose";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7106,7 +7162,7 @@ do (
           <para>Integration of f by Composite Simpson's Rule on the interval [a,b] with n subintervals with 
error of max(f'''')*h^4*(b-a)/180, note that n should be even.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/SimpsonsRule.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/SimpsonsRule";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7118,7 +7174,7 @@ do (
           <para>Integration of f by Composite Simpson's Rule on the interval [a,b] with the number of steps 
calculated by the fourth derivative bound and the desired tolerance.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/SimpsonsRule.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/SimpsonsRule";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7128,6 +7184,10 @@ do (
          <listitem>
           <synopsis>Derivative (f,x0)</synopsis>
           <para>Attempt to calculate derivative by trying first symbolically and then numerically.</para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Derivative";>Wikipedia</ulink> for more information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -7248,6 +7308,10 @@ or <varname>b</varname> can be <constant>null</constant>.</para>
           <synopsis>NumericalDerivative (f,x0)</synopsis>
           <para>Aliases: <function>NDerivative</function></para>
           <para>Attempt to calculate numerical derivative.</para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Derivative";>Wikipedia</ulink> for more information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -7587,7 +7651,7 @@ and has period <userinput>b-a</userinput>.</para>
          <term><anchor id="gel-function-DirichletKernel"/>DirichletKernel</term>
          <listitem>
           <synopsis>DirichletKernel (n,t)</synopsis>
-          <para>Dirichlet kernel of order n.</para>
+         <para>Dirichlet kernel of order <varname>n</varname>.</para>
          </listitem>
         </varlistentry>
 
@@ -7607,7 +7671,8 @@ and has period <userinput>b-a</userinput>.</para>
           <para>The error function, 2/sqrt(pi) * int_0^x e^(-t^2) dt.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/ErrorFunction.html";>Planetmath</ulink> for more 
information.
+           <ulink url="https://en.wikipedia.org/wiki/Error_function";>Wikipedia</ulink> or
+           <ulink url="http://planetmath.org/ErrorFunction";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7620,7 +7685,7 @@ and has period <userinput>b-a</userinput>.</para>
                <varname>t</varname></para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/FejerKernel.html";>Planetmath</ulink> for more 
information.
+           <ulink url="http://planetmath.org/FejerKernel";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7633,7 +7698,7 @@ and has period <userinput>b-a</userinput>.</para>
           <para>The Gamma function.  Currently only implemented for real values.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/GammaFunction.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/GammaFunction";>Planetmath</ulink> or
            <ulink url="http://en.wikipedia.org/wiki/Gamma_function";>Wikipedia</ulink> for more information.
           </para>
          </listitem>
@@ -7702,7 +7767,7 @@ and has period <userinput>b-a</userinput>.</para>
           <para>Moebius mapping of the disk to itself mapping a to 0.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html";>Planetmath</ulink> for 
more information.
+           <ulink url="http://planetmath.org/MobiusTransformation";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7714,7 +7779,7 @@ and has period <userinput>b-a</userinput>.</para>
           <para>Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity 
respectively.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html";>Planetmath</ulink> for 
more information.
+           <ulink url="http://planetmath.org/MobiusTransformation";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7726,7 +7791,7 @@ and has period <userinput>b-a</userinput>.</para>
           <para>Moebius mapping using the cross ratio taking infinity to infinity and z2,z3 to 1 and 0 
respectively.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html";>Planetmath</ulink> for 
more information.
+           <ulink url="http://planetmath.org/MobiusTransformation";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7738,7 +7803,7 @@ and has period <userinput>b-a</userinput>.</para>
           <para>Moebius mapping using the cross ratio taking infinity to 1 and z3,z4 to 0 and infinity 
respectively.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html";>Planetmath</ulink> for 
more information.
+           <ulink url="http://planetmath.org/MobiusTransformation";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7750,7 +7815,7 @@ and has period <userinput>b-a</userinput>.</para>
           <para>Moebius mapping using the cross ratio taking infinity to 0 and z2,z4 to 1 and infinity 
respectively.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/MobiusTransformation.html";>Planetmath</ulink> for 
more information.
+           <ulink url="http://planetmath.org/MobiusTransformation";>Planetmath</ulink> for more information.
           </para>
          </listitem>
         </varlistentry>
@@ -7779,7 +7844,7 @@ and has period <userinput>b-a</userinput>.</para>
           <para>The Riemann zeta function.  Currently only implemented for real values.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/RiemannZetaFunction.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/RiemannZetaFunction";>Planetmath</ulink> or
            <ulink url="http://en.wikipedia.org/wiki/Riemann_zeta_function";>Wikipedia</ulink> for more 
information.
           </para>
          </listitem>
@@ -7861,7 +7926,7 @@ and has period <userinput>b-a</userinput>.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/CubicFormula.html";>Planetmath</ulink>,
+           <ulink url="http://planetmath.org/CubicFormula";>Planetmath</ulink>,
            <ulink url="http://mathworld.wolfram.com/CubicFormula.html";>Mathworld</ulink>, or
            <ulink url="http://en.wikipedia.org/wiki/Cubic_equation";>Wikipedia</ulink> for more information.
          </para>
@@ -7891,7 +7956,7 @@ and has period <userinput>b-a</userinput>.</para>
          </para>
           <para>
            See
-           <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html";>Mathworld</ulink>, or
+           <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html";>Mathworld</ulink> or
            <ulink url="http://en.wikipedia.org/wiki/Eulers_method";>Wikipedia</ulink> for more information.
          </para>
          </listitem>
@@ -7947,7 +8012,7 @@ and has period <userinput>b-a</userinput>.</para>
          </para>
           <para>
            See
-           <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html";>Mathworld</ulink>, or
+           <ulink url="http://mathworld.wolfram.com/EulerForwardMethod.html";>Mathworld</ulink> or
            <ulink url="http://en.wikipedia.org/wiki/Eulers_method";>Wikipedia</ulink> for more information.
          </para>
          <para>Version 1.0.10 onwards.</para>
@@ -8089,7 +8154,7 @@ and has period <userinput>b-a</userinput>.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/QuadraticFormula.html";>Planetmath</ulink> or
+           <ulink url="http://planetmath.org/QuadraticFormula";>Planetmath</ulink> or
            <ulink url="http://mathworld.wolfram.com/QuadraticFormula.html";>Mathworld</ulink> for more 
information.
          </para>
          </listitem>
@@ -8109,7 +8174,7 @@ and has period <userinput>b-a</userinput>.</para>
          </para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/QuarticFormula.html";>Planetmath</ulink>,
+           <ulink url="http://planetmath.org/QuarticFormula";>Planetmath</ulink>,
            <ulink url="http://mathworld.wolfram.com/QuarticEquation.html";>Mathworld</ulink>, or
            <ulink url="http://en.wikipedia.org/wiki/Quartic_equation";>Wikipedia</ulink> for more information.
          </para>
@@ -8136,7 +8201,7 @@ and has period <userinput>b-a</userinput>.</para>
          </para>
           <para>
            See
-           <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html";>Mathworld</ulink>, or
+           <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html";>Mathworld</ulink> or
            <ulink url="http://en.wikipedia.org/wiki/Runge-Kutta_methods";>Wikipedia</ulink> for more 
information.
          </para>
          </listitem>
@@ -8189,7 +8254,7 @@ and has period <userinput>b-a</userinput>.</para>
          </para>
           <para>
            See
-           <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html";>Mathworld</ulink>, or
+           <ulink url="http://mathworld.wolfram.com/Runge-KuttaMethod.html";>Mathworld</ulink> or
            <ulink url="http://en.wikipedia.org/wiki/Runge-Kutta_methods";>Wikipedia</ulink> for more 
information.
          </para>
          <para>Version 1.0.10 onwards.</para>
@@ -8341,7 +8406,7 @@ and has period <userinput>b-a</userinput>.</para>
           degree than <varname>q</varname>.</para>
           <para>
            See
-           <ulink url="http://planetmath.org/encyclopedia/PolynomialLongDivision.html";>Planetmath</ulink> 
for more information.
+           <ulink url="http://planetmath.org/PolynomialLongDivision";>Planetmath</ulink> for more information.
          </para>
          </listitem>
         </varlistentry>
@@ -8577,6 +8642,10 @@ and has period <userinput>b-a</userinput>.</para>
 = (`(x)=(7*(2*x)))
 </screen>
           </para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Derivative";>Wikipedia</ulink> for more information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -8587,6 +8656,10 @@ and has period <userinput>b-a</userinput>.</para>
          <para>Attempt to symbolically differentiate the function f, where f is a function of one variable, 
returns <constant>null</constant> if unsuccessful but is silent.
          (See <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>)
           </para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Derivative";>Wikipedia</ulink> for more information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -8597,6 +8670,10 @@ and has period <userinput>b-a</userinput>.</para>
           <para>Attempt to symbolically differentiate a function n times.
          (See <link linkend="gel-function-SymbolicDerivative"><function>SymbolicDerivative</function></link>)
           </para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Derivative";>Wikipedia</ulink> for more information.
+          </para>
          </listitem>
         </varlistentry>
 
@@ -8607,6 +8684,10 @@ and has period <userinput>b-a</userinput>.</para>
          <para>Attempt to symbolically differentiate a function n times quietly and return 
<constant>null</constant> on failure
          (See <link 
linkend="gel-function-SymbolicNthDerivative"><function>SymbolicNthDerivative</function></link>)
           </para>
+          <para>
+           See
+           <ulink url="https://en.wikipedia.org/wiki/Derivative";>Wikipedia</ulink> for more information.
+          </para>
          </listitem>
         </varlistentry>
 
diff --git a/src/calc.h b/src/calc.h
index 0e54fc5..eaa225f 100644
--- a/src/calc.h
+++ b/src/calc.h
@@ -1,5 +1,5 @@
 /* GENIUS Calculator
- * Copyright (C) 1997-2015 Jiri (George) Lebl
+ * Copyright (C) 1997-2016 Jiri (George) Lebl
  *
  * Author: Jiri (George) Lebl
  *
@@ -29,7 +29,7 @@
 
 #include "structs.h"
 
-#define GENIUS_COPYRIGHT_STRING N_("Copyright (C) 1997-2015 Jiří (George) Lebl")
+#define GENIUS_COPYRIGHT_STRING N_("Copyright (C) 1997-2016 Jiří (George) Lebl")
 
 typedef enum {
        GEL_NO_ERROR = 0,
diff --git a/src/funclib.c b/src/funclib.c
index abf1c18..9f855ee 100644
--- a/src/funclib.c
+++ b/src/funclib.c
@@ -1,5 +1,5 @@
 /* GENIUS Calculator
- * Copyright (C) 1997-2015 Jiri (George) Lebl
+ * Copyright (C) 1997-2016 Jiri (George) Lebl
  *
  * Author: Jiri (George) Lebl
  *
@@ -1349,6 +1349,8 @@ StripZeroColumns_op (GelCtx *ctx, GelETree * * a, gboolean *exception)
        if (cnt == w) {
                g_slist_free (cols);
                return gel_copynode (a[0]);
+       } else if (cnt == 0) {
+               return gel_makenum_null ();
        }
 
        nm = gel_matrix_new ();
diff --git a/src/geniustests.txt b/src/geniustests.txt
index c968e71..f69578b 100644
--- a/src/geniustests.txt
+++ b/src/geniustests.txt
@@ -1225,6 +1225,8 @@ Subfactorial(0)                                                   1
 Subfactorial(-1)                                               Subfactorial(-1)
 Factorial([0,1,2,3,4,5,6])                                     [1,1,2,6,24,120,720]
 DoubleFactorial([0,1,2,3,4,5,6])                               [1,1,2,3,8,15,48]
+StripZeroColumns(zeros(4,4))+0                                 ((null)+0)
+Image(zeros(4,4))+0                                            ((null)+0)
 load "nullspacetest.gel"                                       true
 load "longtest.gel"                                            true
 load "testprec.gel"                                            true


[Date Prev][Date Next]   [Thread Prev][Thread Next]   [Thread Index] [Date Index] [Author Index]