[gimp] app: move the handle transform matrix calculation to gimp-transform-utils.[ch]
- From: Michael Natterer <mitch src gnome org>
- To: commits-list gnome org
- Cc:
- Subject: [gimp] app: move the handle transform matrix calculation to gimp-transform-utils.[ch]
- Date: Sat, 17 Jun 2017 08:04:31 +0000 (UTC)
commit 6cd91f1fde36c5d57463daf1623271484e333eb9
Author: Michael Natterer <mitch gimp org>
Date: Sat Jun 17 10:03:24 2017 +0200
app: move the handle transform matrix calculation to gimp-transform-utils.[ch]
app/core/gimp-transform-utils.c | 187 +++++++++++++++++++++++++++++++++++
app/core/gimp-transform-utils.h | 17 +++
app/tools/gimphandletransformtool.c | 173 ++++----------------------------
3 files changed, 223 insertions(+), 154 deletions(-)
---
diff --git a/app/core/gimp-transform-utils.c b/app/core/gimp-transform-utils.c
index 482cb6b..4cd11db 100644
--- a/app/core/gimp-transform-utils.c
+++ b/app/core/gimp-transform-utils.c
@@ -328,6 +328,193 @@ gimp_transform_matrix_perspective (GimpMatrix3 *matrix,
gimp_matrix3_mult (&trafo, matrix);
}
+/* modified gaussian algorithm
+ * solves a system of linear equations
+ *
+ * Example:
+ * 1x + 2y + 4z = 25
+ * 2x + 1y = 4
+ * 3x + 5y + 2z = 23
+ * Solution: x=1, y=2, z=5
+ *
+ * Input:
+ * matrix = { 1,2,4,25,2,1,0,4,3,5,2,23 }
+ * s = 3 (Number of variables)
+ * Output:
+ * return value == TRUE (TRUE, if there is a single unique solution)
+ * solution == { 1,2,5 } (if the return value is FALSE, the content
+ * of solution is of no use)
+ */
+static gboolean
+mod_gauss (gdouble matrix[],
+ gdouble solution[],
+ gint s)
+{
+ gint p[s]; /* row permutation */
+ gint i, j, r, temp;
+ gdouble q;
+ gint t = s + 1;
+
+ for (i = 0; i < s; i++)
+ {
+ p[i] = i;
+ }
+
+ for (r = 0; r < s; r++)
+ {
+ /* make sure that (r,r) is not 0 */
+ if (matrix[p[r] * t + r] == 0.0)
+ {
+ /* we need to permutate rows */
+ for (i = r + 1; i <= s; i++)
+ {
+ if (i == s)
+ {
+ /* if this happens, the linear system has zero or
+ * more than one solutions.
+ */
+ return FALSE;
+ }
+
+ if (matrix[p[i] * t + r] != 0.0)
+ break;
+ }
+
+ temp = p[r];
+ p[r] = p[i];
+ p[i] = temp;
+ }
+
+ /* make (r,r) == 1 */
+ q = 1.0 / matrix[p[r] * t + r];
+ matrix[p[r] * t + r] = 1.0;
+
+ for (j = r + 1; j < t; j++)
+ {
+ matrix[p[r] * t + j] *= q;
+ }
+
+ /* make that all entries in column r are 0 (except (r,r)) */
+ for (i = 0; i < s; i++)
+ {
+ if (i == r)
+ continue;
+
+ for (j = r + 1; j < t ; j++)
+ {
+ matrix[p[i] * t + j] -= matrix[p[r] * t + j] * matrix[p[i] * t + r];
+ }
+
+ /* we don't need to execute the following line
+ * since we won't access this element again:
+ *
+ * matrix[p[i] * t + r] = 0.0;
+ */
+ }
+ }
+
+ for (i = 0; i < s; i++)
+ {
+ solution[i] = matrix[p[i] * t + s];
+ }
+
+ return TRUE;
+}
+
+void
+gimp_transform_matrix_handles (GimpMatrix3 *matrix,
+ gdouble x1,
+ gdouble y1,
+ gdouble x2,
+ gdouble y2,
+ gdouble x3,
+ gdouble y3,
+ gdouble x4,
+ gdouble y4,
+ gdouble t_x1,
+ gdouble t_y1,
+ gdouble t_x2,
+ gdouble t_y2,
+ gdouble t_x3,
+ gdouble t_y3,
+ gdouble t_x4,
+ gdouble t_y4)
+{
+ GimpMatrix3 trafo;
+ gdouble opos_x[4];
+ gdouble opos_y[4];
+ gdouble pos_x[4];
+ gdouble pos_y[4];
+ gdouble coeff[8 * 9];
+ gdouble sol[8];
+ gint i;
+
+ g_return_if_fail (matrix != NULL);
+
+ opos_x[0] = x1;
+ opos_y[0] = y1;
+ opos_x[1] = x2;
+ opos_y[1] = y2;
+ opos_x[2] = x3;
+ opos_y[2] = y3;
+ opos_x[3] = x4;
+ opos_y[3] = y4;
+
+ pos_x[0] = t_x1;
+ pos_y[0] = t_y1;
+ pos_x[1] = t_x2;
+ pos_y[1] = t_y2;
+ pos_x[2] = t_x3;
+ pos_y[2] = t_y3;
+ pos_x[3] = t_x4;
+ pos_y[3] = t_y4;
+
+ for (i = 0; i < 4; i++)
+ {
+ coeff[i * 9 + 0] = opos_x[i];
+ coeff[i * 9 + 1] = opos_y[i];
+ coeff[i * 9 + 2] = 1;
+ coeff[i * 9 + 3] = 0;
+ coeff[i * 9 + 4] = 0;
+ coeff[i * 9 + 5] = 0;
+ coeff[i * 9 + 6] = -opos_x[i] * pos_x[i];
+ coeff[i * 9 + 7] = -opos_y[i] * pos_x[i];
+ coeff[i * 9 + 8] = pos_x[i];
+
+ coeff[(i + 4) * 9 + 0] = 0;
+ coeff[(i + 4) * 9 + 1] = 0;
+ coeff[(i + 4) * 9 + 2] = 0;
+ coeff[(i + 4) * 9 + 3] = opos_x[i];
+ coeff[(i + 4) * 9 + 4] = opos_y[i];
+ coeff[(i + 4) * 9 + 5] = 1;
+ coeff[(i + 4) * 9 + 6] = -opos_x[i] * pos_y[i];
+ coeff[(i + 4) * 9 + 7] = -opos_y[i] * pos_y[i];
+ coeff[(i + 4) * 9 + 8] = pos_y[i];
+ }
+
+ if (mod_gauss (coeff, sol, 8))
+ {
+ trafo.coeff[0][0] = sol[0];
+ trafo.coeff[0][1] = sol[1];
+ trafo.coeff[0][2] = sol[2];
+ trafo.coeff[1][0] = sol[3];
+ trafo.coeff[1][1] = sol[4];
+ trafo.coeff[1][2] = sol[5];
+ trafo.coeff[2][0] = sol[6];
+ trafo.coeff[2][1] = sol[7];
+ trafo.coeff[2][2] = 1;
+ }
+ else
+ {
+ /* this should not happen reset the matrix so the user sees that
+ * something went wrong
+ */
+ gimp_matrix3_identity (&trafo);
+ }
+
+ gimp_matrix3_mult (&trafo, matrix);
+}
+
gboolean
gimp_transform_polygon_is_convex (gdouble x1,
gdouble y1,
diff --git a/app/core/gimp-transform-utils.h b/app/core/gimp-transform-utils.h
index 098a490..6033c09 100644
--- a/app/core/gimp-transform-utils.h
+++ b/app/core/gimp-transform-utils.h
@@ -85,6 +85,23 @@ void gimp_transform_matrix_perspective (GimpMatrix3 *matrix,
gdouble t_y3,
gdouble t_x4,
gdouble t_y4);
+void gimp_transform_matrix_handles (GimpMatrix3 *matrix,
+ gdouble x1,
+ gdouble y1,
+ gdouble x2,
+ gdouble y2,
+ gdouble x3,
+ gdouble y3,
+ gdouble x4,
+ gdouble y4,
+ gdouble t_x1,
+ gdouble t_y1,
+ gdouble t_x2,
+ gdouble t_y2,
+ gdouble t_x3,
+ gdouble t_y3,
+ gdouble t_x4,
+ gdouble t_y4);
gboolean gimp_transform_polygon_is_convex (gdouble x1,
gdouble y1,
diff --git a/app/tools/gimphandletransformtool.c b/app/tools/gimphandletransformtool.c
index 09e1502..8e59902 100644
--- a/app/tools/gimphandletransformtool.c
+++ b/app/tools/gimphandletransformtool.c
@@ -30,6 +30,7 @@
#include "config/gimpguiconfig.h" /* playground */
#include "core/gimp.h" /* playground */
+#include "core/gimp-transform-utils.h"
#include "widgets/gimphelp-ids.h"
#include "widgets/gimpwidgets-utils.h"
@@ -136,9 +137,6 @@ static inline gdouble calc_lineintersect_ratio (gdouble p1x,
gdouble q1y,
gdouble q2x,
gdouble q2y);
-static gboolean mod_gauss (gdouble matrix[],
- gdouble solution[],
- gint s);
G_DEFINE_TYPE (GimpHandleTransformTool, gimp_handle_transform_tool,
@@ -609,66 +607,27 @@ gimp_handle_transform_tool_recalc_matrix (GimpTransformTool *tr_tool,
GimpToolWidget *widget)
{
GimpHandleTransformTool *ht_tool = GIMP_HANDLE_TRANSFORM_TOOL (tr_tool);
- gdouble coeff[8 * 9];
- gdouble sol[8];
- gdouble opos_x[4];
- gdouble opos_y[4];
- gdouble pos_x[4];
- gdouble pos_y[4];
- gint i;
if (ht_tool->matrix_recalculation)
{
- for (i = 0; i < 4; i++)
- {
- pos_x[i] = tr_tool->trans_info[X0 + i * 2];
- pos_y[i] = tr_tool->trans_info[Y0 + i * 2];
- opos_x[i] = tr_tool->trans_info[OX0 + i * 2];
- opos_y[i] = tr_tool->trans_info[OY0 + i * 2];
- }
-
- for (i = 0; i < 4; i++)
- {
- coeff[i * 9 + 0] = opos_x[i];
- coeff[i * 9 + 1] = opos_y[i];
- coeff[i * 9 + 2] = 1;
- coeff[i * 9 + 3] = 0;
- coeff[i * 9 + 4] = 0;
- coeff[i * 9 + 5] = 0;
- coeff[i * 9 + 6] = -opos_x[i] * pos_x[i];
- coeff[i * 9 + 7] = -opos_y[i] * pos_x[i];
- coeff[i * 9 + 8] = pos_x[i];
-
- coeff[(i + 4) * 9 + 0] = 0;
- coeff[(i + 4) * 9 + 1] = 0;
- coeff[(i + 4) * 9 + 2] = 0;
- coeff[(i + 4) * 9 + 3] = opos_x[i];
- coeff[(i + 4) * 9 + 4] = opos_y[i];
- coeff[(i + 4) * 9 + 5] = 1;
- coeff[(i + 4) * 9 + 6] = -opos_x[i] * pos_y[i];
- coeff[(i + 4) * 9 + 7] = -opos_y[i] * pos_y[i];
- coeff[(i + 4) * 9 + 8] = pos_y[i];
- }
-
- if (mod_gauss (coeff, sol, 8))
- {
- tr_tool->transform.coeff[0][0] = sol[0];
- tr_tool->transform.coeff[0][1] = sol[1];
- tr_tool->transform.coeff[0][2] = sol[2];
- tr_tool->transform.coeff[1][0] = sol[3];
- tr_tool->transform.coeff[1][1] = sol[4];
- tr_tool->transform.coeff[1][2] = sol[5];
- tr_tool->transform.coeff[2][0] = sol[6];
- tr_tool->transform.coeff[2][1] = sol[7];
- tr_tool->transform.coeff[2][2] = 1;
- }
- else
- {
- /* this should not happen reset the matrix so the user sees
- * that something went wrong
- */
- gimp_matrix3_identity (&tr_tool->transform);
- }
+ gimp_matrix3_identity (&tr_tool->transform);
+ gimp_transform_matrix_handles (&tr_tool->transform,
+ tr_tool->trans_info[OX0],
+ tr_tool->trans_info[OY0],
+ tr_tool->trans_info[OX1],
+ tr_tool->trans_info[OY1],
+ tr_tool->trans_info[OX2],
+ tr_tool->trans_info[OY2],
+ tr_tool->trans_info[OX3],
+ tr_tool->trans_info[OY3],
+ tr_tool->trans_info[X0],
+ tr_tool->trans_info[Y0],
+ tr_tool->trans_info[X1],
+ tr_tool->trans_info[Y1],
+ tr_tool->trans_info[X2],
+ tr_tool->trans_info[Y2],
+ tr_tool->trans_info[X3],
+ tr_tool->trans_info[Y3]);
}
}
@@ -928,97 +887,3 @@ calc_lineintersect_ratio (gdouble p1x, gdouble p1y,
return u / (u - 1);
}
-
-
-/* modified gaussian algorithm
- * solves a system of linear equations
- *
- * Example:
- * 1x + 2y + 4z = 25
- * 2x + 1y = 4
- * 3x + 5y + 2z = 23
- * Solution: x=1, y=2, z=5
- *
- * Input:
- * matrix = { 1,2,4,25,2,1,0,4,3,5,2,23 }
- * s = 3 (Number of variables)
- * Output:
- * return value == TRUE (TRUE, if there is a single unique solution)
- * solution == { 1,2,5 } (if the return value is FALSE, the content
- * of solution is of no use)
- */
-static gboolean
-mod_gauss (gdouble matrix[],
- gdouble solution[],
- gint s)
-{
- gint p[s]; /* row permutation */
- gint i, j, r, temp;
- gdouble q;
- gint t = s + 1;
-
- for (i = 0; i < s; i++)
- {
- p[i] = i;
- }
-
- for (r = 0; r < s; r++)
- {
- /* make sure that (r,r) is not 0 */
- if (matrix[p[r] * t + r] == 0.0)
- {
- /* we need to permutate rows */
- for (i = r + 1; i <= s; i++)
- {
- if (i == s)
- {
- /* if this happens, the linear system has zero or
- * more than one solutions.
- */
- return FALSE;
- }
-
- if (matrix[p[i] * t + r] != 0.0)
- break;
- }
-
- temp = p[r];
- p[r] = p[i];
- p[i] = temp;
- }
-
- /* make (r,r) == 1 */
- q = 1.0 / matrix[p[r] * t + r];
- matrix[p[r] * t + r] = 1.0;
-
- for (j = r + 1; j < t; j++)
- {
- matrix[p[r] * t + j] *= q;
- }
-
- /* make that all entries in column r are 0 (except (r,r)) */
- for (i = 0; i < s; i++)
- {
- if (i == r)
- continue;
-
- for (j = r + 1; j < t ; j++)
- {
- matrix[p[i] * t + j] -= matrix[p[r] * t + j] * matrix[p[i] * t + r];
- }
-
- /* we don't need to execute the following line
- * since we won't access this element again:
- *
- * matrix[p[i] * t + r] = 0.0;
- */
- }
- }
-
- for (i = 0; i < s; i++)
- {
- solution[i] = matrix[p[i] * t + s];
- }
-
- return TRUE;
-}
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]